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ABSTRACT 

Numerical simulations of compressible two-component flows with a general equation of state 

(EOS), written in the form of the Mie-Grüneisen EOS, have been conducted using the diffuse 

interface method on a structured mesh. The unsteady and inviscid one-dimensional six-

equation model of Kapila is employed to describe compressible two-component flows. The 

model is hyperbolic and non-conservative. The solution of the hyperbolic equations, including 

the non-conservative equation for the volume fraction evolution, is obtained using an extended 

Harten-Lax-Leer (HLL) approximate Riemann solver. A general formulation for various EOSs 

is proposed to enable simulations of a wide range of applications. In which the two constituents 

are either governed by the same EOS or different types of EOS. In this model, both fluids have 

the same velocity, but each fluid has its own pressure. Therefore, the pressure relaxation 

process is performed instantaneously to drive both constituents' pressures towards equilibrium. 

Several computational test problems were conducted in one and two dimensions to show the 

ability of the numerical method to simulate such problems. The computed results are presented 

without introducing spurious pressure oscillations in the method.  
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ملخــــــــــــــــص البحــــــــــــــــــث 
(، مكتوبة  EOSتم إجراء عمليات محاكاة عددية للتدفقات القابلة للضغط المكونة من عنصرين مع معادلة عامة للحالة )

، باستخدام طريقة الواجهة المنتشرة على شبكة منظمة. تم استخدام نموذج المعادلات قرنسين للحالة-معادلة ميفي شكل  
السداسية غير المستقر وغير الواضح لكابيلا لوصف التدفقات القابلة للضغط المكونة من عنصرين. النموذج مبالغ فيه  

لمحافظة لتطور جزء الحجم باستخدام  وغير محافظ. تم الحصول على حل المعادلات الزائدية بما في ذلك المعادلة غير ا
من  لمختلفة لتمكن  لمعادلات الحالة اح صياغة عامة  اقتر م ا. ت(HLL)  لير-لاكس-هارتن   حل ريمان التقريبي الموسع

أو أنواع مختلفة من  معادلة الحالة  محاكاة مجموعة واسعة من التطبيقات. حيث يتم التحكم في المكونين بنفس    إجراء
الحالة الصوت  .  معادلات  اشتقاق سرعة  ولكوكران  للكتم  درفال  لفان  الحالة  معادلة  ولجونس-من  لي -ولكنس-تشان 

ضغطه الخاص. لذلك، يتم تنفيذ    منهما نفس السرعة ولكن لكل  لهما  ين  مائعموجات الصدمة. في هذا النموذج، كلا اللو 
اء العديد من الاختبارات الحسابية في ن. تم إجر اتز عملية تخفيف الضغط بشكل فوري لدفع ضغط كلا المكونين نحو الا

بمعادلات حالة مختلفة بنفس البرنامج،    البعد الواحد والبعدين لبيان قدرة الطريقة العددية على محاكاة مثل هذه المسائل
 تذبذبات الضغط الزائفة في الطريقة. وجود. تم عرض النتائج المحسوبة دون دون الحاجة إلى تعديله

الجريان المضغوط متعدد الأطوار، معادلة الحالة، موجة الصدمة، طريقة غودونوف، حل ريمان التقريبي.  :الكلمات المفتاحية

1. Introduction

Many processes and systems involve multi-component flows. For example, gas mixing for 

combustion, shock bubble interaction, water under pressure used to cool the nuclear reactor core, 

coolant spray in cooling towers, and cavitation, which may take place on pump impellers, turbine 

blades, or marine propellers. Although compressible multi-component flows have been widely 

investigated, the numerical technique enabling the capture of interfaces using a general equation of 

state (EOS) remains a challenging problem. The ability of a numerical method to deal with various 

EOS enables the study of a wide range of applications. 

To track or capture the interfaces separating multi-component flows, two main approaches have been 

developed. They are the Sharp Interface Methods (SIM) and the Diffuse Interface Methods (DIM). In 

the SIM approach, the interfaces are considered a sharp (non-smeared) discontinuity in the physical or 

thermodynamic properties of the fluids in contact. In the DIM approach, the interfaces are considered 

a diffused zone over a narrow band. To deal with multi-component flows using the SIM approach, 

various methods have been used with different types of EOSs. For example, in [1], the front tracking 

method was implemented to simulate detonation problems with complex EOS governing real gases. 

In [2], the level set method was used to simulate a broad set of test problems where the fluids are 

governed by the stiffened EOS, and in [3], the interface solver based on the coupled level set and 

volume-of-fluid method was used for simulating an underwater explosion where water is governed by 

Tait’s EOS.  

On the other hand, the simplicity of the DIM to deal with coalesce or breakup among different phases 

or fluids has led many researchers to consider this approach. In a recent study [4], the phase-field 

model and corresponding numerical method were developed to simulate a compressible multiphase 

flow. Some studies refer to this method as DIM. In early developments, to simulate material interfaces 

in compressible multi-fluids, various models have been used, for example, the mass fraction model, 

and the Gamma model. However, they suffered from unphysical oscillations in mass fraction and 

pressure at material interfaces. In [5], the mass fraction model was used in which a numerical flux 

modification was introduced. It guarantees the positivity of the mass fraction but produces pressure 

oscillations. In [6], the Gamma model based on a non-conservative scheme was used to avoid pressure 

oscillations, which guarantees mass fraction positivity but cannot handle strong shock waves. Karni 
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improved her method to capture strong shock waves [7]. The method was established using a level set 

technique to trace the interface location; the pressure at the interface is calculated using the primitive 

variable formulation of the Euler equations. However, their major drawbacks are due to conservation 

errors, which produce inaccurate internal energy and temperature at the interface. Moreover, they are 

not easy to be applied with various equations of state. In [8], a quasi-conservative method based on 

the mass fraction model was used to prevent spurious oscillations in pressure. Based on the basic idea 

of Abgrall [8], a simple second-order conservative TVD scheme combined with a second-order non-

conservative scheme was presented in [9]. In which the stiffened gas EOS was considered in the 

simulations of compressible multi-fluid flows. This study has been extended in [10] to include the 

general EOS to simulate real material interactions test problems, where the Euler equations were 

replaced by a multiphase flow model and each phase was governed by its own EOS. Shyue [11] used 

the compressible Euler equations and proposed an extension of the work presented in [9, 12] to include 

the van der Waals EOS by casting the stiffened and van der Waals EOSs in a modified form known as 

the general van der Waals EOS. The modified van der Waals EOS was used for modelling the mixing 

zone between the two fluids. This work was extended in [13] to include the general Mie-Grüneisen 

EOS. However, these extensions are complex, as the number of equations in the model increases 

depending on the number of parameters defining the EOS of the fluids being considered. Using the 

reduced five-equation model of Allaire et al. [14] which is similar to that derived by Kapila et al. [15], 

the results of [8, 9, 12] were extended in [16, 17] through the simulation of interfaces between 

compressible fluids with various equations of state including the Mie-Grüneisen EOS. 

Although the five-equation model [14, 15, 18] satisfies the mechanical equilibrium by using single 

pressure and velocity, which enable the model to be written in a conservative form. The model 

possesses some significant computational difficulties, arise from the presence of the non-conservative 

equation of the evolution of the volume fraction. These difficulties are related to shock computations, 

maintaining positivity of the volume fraction and capturing accurately wave transmission across 

diffuse interfaces. These difficulties are due to the non-conservative model, the difficulties in the 

approximation of velocity divergence in the volume fraction evolution equation and the non- 

monotonic behaviour of sound speed, respectively [19]. To overcome these difficulties the six-

equation model [15] was investigated in [19], by restoring the effects of pressure non-equilibrium in 

the volume fraction equation using two pressures and related pressure relaxation terms. Petitpas et al. 

[20] highlighted that when using complicated EOSs, they had to perform multiple adjustments to their

algorithm. An attempt was made in [21] to construct a common framework for the general EOS, but

their approach was different.

In this paper, the six-equation model [15] has been used here to consider various equations of state, 

including the more complex EOSs, i.e. van der Waals, Cochran-Chan, Jones-Wilkins-Lee (JWL) and 

shock wave EOSs, written in the general form of the Mie-Grüneisen EOS, without the need to do the 

modifications in the developed algorithm. The interfaces are captured rather than tracked using a 

developed diffuse interface method on a structured grid. The method is based on Godunov’s approach 

to solve the hyperbolic part of the model using an extended HLL approximate Riemann solver 

described in [22] for single phase, which is modified and then extended to simulate compressible two-

phase flow in two dimensions as given in [23]. To achieve a second-order accuracy, the MUSCL 

scheme is implemented with the Slope-Limiter. 

2. The Compressible Two-Phase Flow Model

The compressible two-phase flow model, which is known as the six-equation model [19, 24], was 

derived by Kapila et al. [15] from the seven-equation model of Baer and Nunziato [25] in the 

asymptotic limit of zero velocity relaxation time. In this model, both fluids have the same velocity but 

each fluid has its own pressure. The model consists of the evolution equation for the volume fraction 

of one of the phases, the mass equations for each phase, a mixture momentum equation and the energy 

equations for each phase. The non-conservative hyperbolic model in two dimensions without heat and 

mass transfer and its closure relations are given in [23] and in one-dimensional form is written as 

follows: 
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𝜕𝛼1 

𝜕𝑡
+ 𝑢

𝜕𝛼1

𝜕𝑥
= µ(𝑝 − 𝑝 ),  (1𝑎) 

𝜕𝛼1𝜌1

𝜕𝑡
 +

 𝜕𝛼1𝜌1𝑢

𝜕𝑥
 =  0,  (1𝑏) 

𝜕𝛼2𝜌2

𝜕𝑡
 +

 𝜕𝛼2𝜌2𝑢

𝜕𝑥
 =  0,  (1𝑐) 

𝜕𝜌𝑢

𝜕𝑡
+

𝜕(𝜌𝑢2 +  𝛼1𝑝1 +  𝛼2𝑝
2

)

𝜕𝑥
= 0,  (1d)

𝜕𝛼1𝜌
1
𝑒1

𝜕𝑡
+

𝜕𝛼1𝜌
1
𝑒1𝑢

𝜕𝑥
+ 𝛼1𝜌

1

𝜕𝑢

𝜕𝑥
= −µ𝑝𝐼 (𝑝1 − 𝑝2),  (1𝑒) 

𝜕𝛼2𝜌
2
𝑒2

𝜕𝑡
+

𝜕𝛼2𝜌
2
𝑒2𝑢

𝜕𝑥
+ 𝛼2𝜌

2

𝜕𝑢

𝜕𝑥
= −µ𝑝𝐼 (𝑝1 − 𝑝2),  (1𝑓)

where αn, ρn, pn and en are the volume fraction, the density, the pressure and the specific internal 

energy of phase n. The subscript n refers to the subscripts 1 and 2 that denote phases 1 and 2, 

respectively, pI is the interfacial pressure, u is the x-component of the mixture velocity and ρ is the 

mixture density. 

In the presence of shocks, inaccuracies in the thermodynamic state are expected because of the 

approximation of the two non-conservative internal energy equations. To correct these inaccuracies, 

an additional conservative total mixture energy equation was proposed in [19]. This equation is 

obtained by summing up the two internal energy equations with mass and momentum equations. 

𝜕 (𝜌𝑒 +
1
2

𝜌𝑢2)

𝜕𝑡
+

𝜕𝑢 (𝜌𝑒 +
1
2

𝜌𝑢2 +  𝛼1𝑝1 +  𝛼2𝑝2)

𝜕𝑥
= 0,  (2) 

where ρe the mixture internal energy is defined as ρe = α1ρ1e1 + α2ρ2e2. 

2.1 Equations of state (EOSs) 

An equation of state for each phase is needed to relate the pressure with the density and the internal 

energy. The six-equation model is flexible and can deal with different equations of state for each phase. 

In order to deal with problems with different types of EOSs, we write various EOSs in the general 

form of the Mie-Grüneisen EOS as follows: 

𝑝(𝜌, 𝑒)  =  𝜌 𝛤𝑘(𝜌)[𝑒 −  𝑒𝑘(𝜌)]  +  𝑝𝑘(𝜌)  (3) 

where Γk(ρ), ek(ρ) and pk(ρ) are the material dependent functions, i.e. reference Grüneisen, internal 

energy and pressure. They are given for various EOSs in Table 1. With these reference functions, it is 

now feasible to simulate a diverse range of applications using different equations of state (EOSs) 

without the requirement for algorithm modifications.  

1) Ideal gas EOS:

In the caloric ideal gas EOS, the pressure has the form 

𝑝 =  (𝛾 −  1)𝜌𝑒,  (4) 

where γ is the adiabatic specific heat ratio depending on the gas under consideration, γ = cp/cv. The 

parameters cp and cv are the specific heats at constant pressure and volume, respectively. By writing 

the ideal gas EOS (4) in the form of Mie-Grüneisen EOS (3), the reference material dependent 

functions are as given in Table 1. The adiabatic specific heat ratio for an ideal gas could also be 

calculated by the relation: 
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𝛾 =  
𝑚 +  2

𝑚

where m is the degrees of freedom of a molecule, for monatomic gases m = 3 and for diatomic gases 

m = 5. 

2) Stiffened gas (SG) EOS:

The stiffened gas EOS can be used to obtain the behaviour of gases, liquids and compressible solids. 

The pressure has the form 

𝑝 =  (𝛾 −  1)𝜌𝑒 − 𝛾𝜋,  (5) 

where the parameters γ and π are constants that depend on the particular material under consideration. 

These parameters can be determined for various materials using the experimental data [26], following 

the procedure given in [27].  It can be notice that if the pressure constant π = 0, SG EOS reduces to the 

ideal gas EOS. By writing the SG EOS (5) in the form of the Mie-Grüneisen EOS (3), the reference 

material dependent functions are as given in Table 1. 

3) van der Waal’s gas EOS:

The van der Waal’s gas EOS is used to govern real gases and can be written in the following form: 

𝑝 =  (
𝛾 −  1

1 −  𝑏𝜌
) (𝜌𝑒 +  𝑎𝜌2) − 𝑎𝜌2,  (6) 

where γ, a and b are constants that depend on the particular gas under consideration. van der Waal’s 

EOS (6) may be rewritten in the form of the Mie-Grüneisen EOS (3), the reference material dependent 

functions are as given in Table 1. 

4) Cochran-Chan EOS:

This EOS is widely used to describe solids under a high-pressure shock wave. It is more accurate than 

the SG EOS in such conditions [10].  The Cochran-Chan EOS may be written in the form of the Mie-

Grüneisen EOS (3) as follows: 

𝑝 = 𝜌(𝛾 −  1) {𝑒 +
𝐴1

𝜌𝑜(1 − 𝐸1)
[(

𝜌𝑜

𝜌
)

1−𝐸1

− 1] −
𝐴1

𝜌𝑜(1 − 𝐸2)
[(

𝜌𝑜

𝜌
)

1−𝐸2

− 1] + 𝐶𝑣𝑇𝑜} +

+𝐴1 (
𝜌𝑜

𝜌
)

−𝐸1

− 𝐴2 (
𝜌𝑜

𝜌
)

−𝐸2

 (7) 

where γ, A1, E1, A2, E2, ρo, Cv and To are parameters that depend on the real material under 

consideration. The reference material dependent functions for the Cochran-Chan EOS are given in 

Table 1. 

5) Jones-Wilkins-Lee (JWL) EOS:

This EOS is used to govern detonation products. The JWL EOS may be written in the form of the Mie-

Grüneisen EOS (1) as follows: 

𝑝 = 𝜌(𝛾 −  1) {𝑒 −
𝐴1

𝜌𝑜𝑅1
𝑒

(−𝑅1
𝜌𝑜
𝜌 )

−
𝐴2

𝜌𝑜𝑅2
𝑒

(−𝑅2
𝜌𝑜
𝜌 )

− 𝐶𝑒𝑘} + 

𝐴1𝑒
(−𝑅1

𝜌𝑜
𝜌 )

+ 𝐴2𝑒
(−𝑅2

𝜌𝑜
𝜌 )

 (8)
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where γ, A1, R1, A2, R2 and Cek are constants that depend on the real material under consideration. The 

reference material dependent functions for the JWL EOS are given in Table 1. 

6) Shock wave EOS:

This equation of state consists of the Mie-Grüneisen EOS (3) and: 

𝑈𝑠 = 𝑐0 + 𝑠𝑈𝑝 

where 𝑈𝑠 is the shock velocity, 𝑐0 is the speed of sound in the material under consideration at

atmospheric conditions, 𝑈𝑝 is the particle velocity and 𝑠 is a dimensionless parameter. Experimental

data for high pressure values are available for many materials in [28]. 

𝑝 = 𝜌(𝛾 −  1) (
𝜌𝑜

𝜌
)

𝛼

𝑒 − 𝑒𝑜 − (
𝐶𝑜

2 (1 −
𝜌𝑜
𝜌

)
2

2 [1 − 𝑠 (1 −
𝜌𝑜
𝜌

)]
2) + 

𝑝𝑜 +
𝜌𝑜𝐶𝑜

2 (1 −
𝜌𝑜
𝜌

)

[1 − 𝑠 (1 −
𝜌𝑜
𝜌

)]
2  (9) 

The general form for the mixture EOS can be written as follows: 

𝑝(𝜌𝑒 , 𝛼1, 𝛼2) =

𝜌𝑒 − ∑ (
𝛼𝑛(𝜌𝑛Γ𝑘(𝜌𝑛)𝑒𝑘(𝜌𝑛) − 𝑝𝑘(𝜌𝑛))

Γ𝑘(𝜌𝑛)
)2

𝑛

∑ (
𝛼𝑛

Γ𝑘(𝜌𝑛)
)2

𝑛

 (10) 

where ρe is the mixture internal energy and is defined as 𝜌𝑒 = ∑ 𝛼𝑛𝜌𝑛𝑒𝑛
2
𝑛  the other functions are 

given in Table 1 for each EOS. 

3. Numerical Method

The numerical solution of the considered six-equation compressible multi-phase flow model is 

complicated owing to the presence of the non-conservative equation of volume fraction evolution, the 

non-conservative terms, and the relaxation and source terms in the model. Thus, the numerical solution 

of the model can be achieved by splitting the model into a hyperbolic part and a source and relaxation 

part. These different parts are solved in succession using the Strang splitting approach, which can 

symbolically be written as follows: 

𝑈𝑖
𝑛+1 = 𝐿𝑠

Δ𝑡
2  𝐿ℎ

Δ𝑡𝐿𝑠

Δ𝑡
2  𝑈𝑖

𝑛  (11) 

The symbol 𝐿𝑠

Δ𝑡

2  represents the relaxation and source terms integration operators over half of the time 

interval. 𝐿ℎ
Δ𝑡 is the numerical solution operator of the hyperbolic part. 𝑈𝑖

𝑛 and 𝑈𝑖
𝑛+1 are the

conservative vectors at the time levels n and n+1, respectively. The hyperbolic part is solved using an 

extended finite volume Godunov approach using the HLL approximate Riemann solver with the 

MUSCL scheme to achieve second-order accuracy as given in [22, 29]. The pressure relaxation is 

applied as given in [30]. 
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4. Numerical Results

To assess the numerical performance of our approach, various compressible two-phase flow problems 

have been studied with either the same type of EOS or different types of EOS applied to each 

phase. All these types of EOSs are used in these problems to show the generality and the oscillation-

free feature of the current method. In all test cases, a common assumption is made, that is a presence 

of a negligible volume fraction 10−8 of the other fluid in the fluid is considered a pure fluid. For all 

test cases, a mesh of 400 cells has been utilized. 
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4.1 One-dimensional test problems 

1) Advection test problem

The first test is a popular interface advection test [20]. The computational domain consists of a 1 m 

tube in length containing water on the left and air on the right. Initially, the interface is located at 

a distance of 0.5 m. The initial data and the stiffened gas EOS parameters for both fluids are: 

(𝜌, 𝑢, 𝑝, 𝛾) = {
1000, 100,  105, 4.4, 6 × 108    if   𝑥 ≤  0.5

50, 100,  105, 1.4, 0                       if   𝑥 >  0.5

The results illustrated in Figure 1 are obtained at time t = 2.79 ms after 2203 time steps using a Courant-

Friedrichs-Lewy (CFL) number equal to 0.9. The test shows the perfect behaviour of the method 

regarding preserving constant velocity and pressure profiles. A good agreement is achieved between 

the numerical solution (circles) and the exact solution (line). 

Figure 1: Advection test: (a) Pressure. (b) Velocity. (c) Mixture density. (d) Air volume 

fraction. Numerical solution (circles) and exact solution (line) at t = 2.79 ms. 

2) Air-gas shock tube test problem

The second test is conducted on the same domain as the first test. In the air-gas shock tube test 

problem, the initial discontinuity that separates the two gases is located at x = 0.5 m. The air on 

the left-hand side of the tube has a higher pressure. Both gases are initially at rest. Air is governed 

by the van der Waals EOS (6), and its constant parameters are γ = 1.4, a = 5, b = 10−3, whereas 

the other gas is governed by the SG EOS (5), and its constant parameters are γ = 1.2,    π = 0. The 

initial conditions are as follows: 

(𝜌, 𝑢, 𝑝) = {
1, 0,  105           if   𝑥 ≤  0.5

0.125, 0,  104    if   𝑥 >  0.5
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A shock wave propagates to the right from the higher density gas to the lower density gas, and a 

rarefaction wave propagates to the left. The results shown in Figure 2 are obtained at                   t 

= 0.0007 s after 351 time steps using a CFL number equal to 0.9. Also, a good agreement is 

achieved between the numerical solution (circles) and the exact solution (line) taken from [31]. 

Figure 2: Air-gas shock tube test: (a) Air volume fraction. (b) Velocity. (c) Mixture density. (d) Pressure. 

Numerical solution (circles) and exact solution (line) at t = 0.0007 s. 

3) Water-air shock tube test problem

The third test is a standard water-air shock tube of 1 m length filled with water under high pressure on 

the left and air on the right at atmospheric pressure, and both fluids are at rest. The initial discontinuity 

that separates liquid and gas is located at x = 0.7 m. The water is governed by the SG EOS (5), and its 

constant parameters are γ = 4.4, π = 6 x 108, whereas air is governed by the van der Waals EOS (6), 

and its constant parameters are γ = 1.4, a = 5, b = 10−3. The initial conditions are as follows: 

(𝜌, 𝑢, 𝑝) = {
1000, 0,  109  if   𝑥 ≤  0.7

50, 0,  105  if   𝑥 >  0.7 

In this test, a strong shock wave with a pressure ratio of 10,000 propagates to the right from the high-

density fluid to the low-density fluid, and a rarefaction wave propagates to the left. Figure 3 shows the 

results of air volume fraction (a), velocity (b), mixture density (c), and pressure (d). The results are 

obtained at time t = 229 µs after 275 time steps using a CFL number equal to 0.9 with 400 cells.  
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Figure 3: Water-air shock tube test: (a) Air volume fraction. (b) Velocity. (c) Mixture density. (d) 

Pressure. Numerical solution (circles) and exact solution (line) at t = 229 μs. 

Also, a good agreement is achieved between the numerical solution (circles) and the exact solution 

(line) taken from [9]. 

4) Solid impact test problem

The fourth test simulates the impact of a copper plate with a solid inert explosive. Both materials are 

governed by the Cochran-Chan EOS (7) and are modelled in a computational domain of 1 m in length. 

The copper is put on the left-hand side, and the explosive material is put on the right-hand side of the 

computational domain. The material interface initially located at x = 0.5 m. While the copper plate has 

an initial velocity of 1500 m/s to the right, the explosive material is at rest. Both materials are at 

atmospheric pressure, with the initial densities and EOS parameters given in Table 2. 

Table 2: Materials Properties for the Cochran-Chan EOS. 

Parameter Copper Explosive 

ρ0, [kg/m3] 8900 1840 

Cv, [J/kg · K] 393 1087 

A1, [Pa] 1.45667 × 1011 1.2871 × 1010 

A2, [Pa] 1.47751 × 1011 1.34253 × 1010 

E1 2.994 4.1 

E2 1.994 3.1 

T0 300 300 

γ 3 1.93 

The solution to this test problem consists of two shock waves. The first is propagating to the right in 

the inert explosive, and the second is propagating to the left in the copper. Figure 4 shows the results 
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of pressure (a), velocity (b), mixture density (c), and temperature (d). The results are obtained at time 

t = 85 µs after 461 time steps using a CFL number equal to 0.5. In detonation problems, it is important 

to report the solution of the detonation temperature, which is calculated for each phase individually as 

follows: 

𝑇𝑛 =
𝑒𝑛

𝐶𝑣𝑛
 𝑛 = 1, 2.  (12) 

The interfacial temperature can be calculated using the following relation: 

𝑇 =
∑ 𝛼𝑛𝜌𝑛

2
𝑛 𝐶𝑣𝑛𝑇𝑛

∑ 𝛼𝑛𝜌𝑛
2
𝑛 𝐶𝑣𝑛

 (13) 

Again, a good agreement is obtained between the numerical solution (circles) and the exact solution 

(line) taken from [9]. 

Figure 4: Solid impact test: (a) Pressure. (b) Velocity. (c) Mixture density. (d) Temperature. 

Numerical solution (circles) and exact solution (line) at t = 85 μs. 

5) Detonation products-copper interaction test problem

The final one-dimensional test problem is an interaction of detonation products with solid copper. 

The detonation products are governed by a more complex EOS, i.e., the Jones-Wilkins-Lee EOS 

(8), and the copper is governed by the Cochran-Chan EOS (7). Both materials are modelled in a 

computational domain of 1 m in length. While the detonation products of TNT explosive are put 

on the left-hand side, the copper is put on the right-hand side. The material interface is initially 

located at x = 0.5 m. The initial conditions, taken from [9, 13], are as follows: 

(𝜌, 𝑢, 𝑝) = {
2485.37, 0,  3.7 × 1010  if   𝑥 ≤  0.5

8900, 0,  105  if   𝑥 >  0.5
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The EOS parameters for copper are the same as for the previous test problem in Table 2, but those for 

the detonation products governed by JWL EOS are ρo = 1840 kg/m3, A1 = 8.545 × 1011 Pa, R1 = 4.6, 

A2 = 2.05 × 1010 Pa, R2 = 1.35, Cv = 815 J/(kg K), γ = 1.25, and Cek = 0. 

The solution to this test problem consists of a shock wave propagating to the right in the copper, and 

a rarefaction wave propagating to the left in the inert explosive. Figure 5 shows the results of pressure 

(a), velocity (b), mixture density (c), and temperature (d). The results are obtained at time    t = 73 µs 

after 348 time steps using a CFL number equal to 0.6.    

Figure 5: Detonation product-copper interaction test: (a) Pressure. (b) Velocity. (c) Mixture density. 

(d) Temperature. Numerical solution using 400 cells (circles) and 10,000 cells (line) at t = 73 μs.

4.2 Two-dimensional test problems 

1) Gas bubble underwater explosion

The gas bubble underwater explosion test is an explosion of a gas bubble at high pressure under water. 

A circular gas bubble of radius ro = 0.2 m is located at the centre of a square computational domain of 

1 m × 1 m. While the top and bottom boundaries of the domain are set to be periodic boundary 

conditions, the left and right boundaries of the domain are set to be extrapolation boundary conditions. 

The water is governed by the SG EOS (5) and its constant parameters are γ = 4.4, π = 6 × 108, whereas 

the gas is governed by the van der Waals EOS (6) and its constant parameters are          γ = 1.4, a = 1, 

b = 10−4. The initial conditions are as follows: 

(𝜌, 𝑢, 𝑝) = {
1250, 0,  109  if   𝑟 ≤  0.2

1000, 0,  105  if   𝑟 >  0.2 

When the explosion of the gas bubble starts, an outward strong shock wave is transmitted to the 

surrounding water, an inward rarefaction wave propagates in the gas, and a contact discontinuity 

continues to separate the gas and water. Figure 6 shows a surface plot for the mixture density and 
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pressure at time t = 120 µs after 436 time steps using a CFL number equal to 0.3 with 300 × 300 cells. 

Figure 7 shows the cross-section plot of the pressure and mixture density for the gas bubble under-

water explosion test at y = 0.5 m and t = 120 µs.  

Figure 6: Pressure and mixture density for gas bubble underwater explosion test at t = 120 µs. 

Figure 7: Cross-section plot of the pressure and mixture density for gas bubble under- water 
explosion test at y = 0.5 m and t = 120 µs (Cercles) current results, (Line) exact solution. 

2) R22 bubble-air shock interaction

The R22 bubble-air shock interaction was examined experimentally in [32], and numerically for 

example, in [32, 33], in order to assess the performance of numerical methods. The initial configuration 

of the computational domain is shown in Figure 8. While reflective boundary conditions are employed 

on the upper and lower boundaries, extrapolation boundary conditions are employed on the left and 

right boundaries. The incident shock wave is located on the right side of the R22 cylindrical bubble 

and travels in air at M=1.22 to the left. The bubble is assumed to be in thermodynamic and mechanical 

equilibrium with the surrounding air. We consider the bubble and the surrounding air (pre-shock air) 

to be at atmospheric pressure and temperature (101325 Pa and 25). The air and R22 properties used 

for this simulation are given in Table 3.  

In what follows the subscripts 1, 2 and 3 denote pre-shocked zone, bubble and post-shocked zone, 

respectively. The bubble density ρ2 can be calculated as follows: 

𝜌2 = 𝜌1

𝑅1

𝑅2
(14)
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Figure 8: Initial configuration for air shock interactions with R22 and Helium bubbles. 

Table 3: Gases properties used for the shock-bubble interactions. 

Gas γ 
R 

[J/kg·K] 
Cv

[J/kg] 

K Air 1.4 0.287 0.72 

R22 1.249 0.091 0.365 

He + 28 % air 1.648 1.578 2.44 

The density, pressure and velocity of the post-shocked zone can be calculated according to [22] as: 

𝜌3 = 𝜌1

(𝛾1 + 1)(𝑀1 − 𝑀3)2

(𝛾1 − 1)(𝑀1 − 𝑀3)2 + 2
 (15) 

𝑝3 = 𝑝1

2𝛾1(𝑀1 − 𝑀3)2 − (𝛾1 − 1)

(𝛾1 + 1)
 (16) 

The speed of sound in air is given by 

𝑐 = √
𝛾1𝑝1

𝜌1
 (17) 

Knowing the Mach number, the shock wave speed 𝑆 can be calculated from: 

𝑆 = 𝑀3𝑐  (18) 

The velocity of air in the post-shocked zone is 

𝑢3 = (1 −
𝜌1

𝜌3
) 𝑆 + 𝑢1

𝜌1

𝜌3
 (19) 

The initial conditions and the constant parameters for the SG EOS governing air and R22 bubble are 

given in Table 4. 

The numerical results of the mixture density using an idealised Schlieren function for the R22 bubble 

and the surrounding air are shown in Figure 9 using a mesh size of 1500 × 445 cells and a CFL number 

equal to 0.3 at times 55, 115, 135, 187, 247, 318, 342, 417, and 1020 µs. In this test, both gases are 

governed by the SG EOS.  

Table 4: Initial conditions and the SG EOS parameters for the R22 bubble test. 
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Physical property 
Air 

pre-shock 

R22 

bubble 

Air 

post-shock 

Density, kg/m3 1.1839 3.734 1.6295 

velocity u, m/s 0 0 -115.478

velocity v, m/s 0 0 0 

Pressure, Pa 101325 101325 159060 

γ 1.4 1.648 1.4 

π 0 0 0 

Similar results to Figure 9 were obtained when air is governed by the van der Waals EOS. This means 

that the van der Waals EOS reduces to the ideal gas EOS. 

Figure 9: The mixture density using idealised Schlieren function  for  R22  bubble-air shock 

interaction at times: (a) 55 µs, (b)115 µs, (c) 135 µs, (d) 187 µs, (e) 247 µs, (f) 318 µs,    

(g) 342 µs, (h) 417 µs and (i) 1020 µs.

The x-t diagram shown in Figure 10 gives the position history of the upstream and downstream edges 

of the R22 bubble as well as the refracted, incident, and transmitted shock waves. The schematic 

diagram on the right part of Figure 10 shows the points used to construct the x-t diagram. All positions 

are measured at the axis of symmetry except for the incident shock wave, which is measured either at 

the top or bottom boundaries of the domain. Since our numerical method is diffusive, the points were 

measured at the mean thickness of the interface. The computed mean velocities compared to the 

experimental results of Haas and Sturtevant [32] and Quirk and Karni [33] are given in Table 5. These 
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results are in very good agreement with the experimental results of [32] and other numerical results of 

[33]. A maximum estimated error of -1.9% is computed compared to the experimental results. 

Table 5: A comparison of the computed velocities for the R22 bubble case with 

experimental results of [32] and numerical results of [33]; for key, see Figure 10 

Velocity Vs VR VT Vu Vd 

Experiment [32] 415 240 540 73 78 

Qurik and Karni [33] 420 254 560 70 82 

% Error +1.2 +5.8 +3.7 -4.1 +5.1

Current 414.32 235.37 536.13 71.6 78.45 

% Error -0.16 -1.9 -0.7 -1.9 +0.57

Figure 10: x − t diagram for R22 bubbles (left), key points (right): Vs incident shock; 

VR refracted shock; VT transmitted shock; Vu upstream edge; Vd downstream edge. 

3) Helium bubble-air shock interaction

The helium bubble-air shock interaction was examined experimentally in [32, 35], and numerically 

for example, in [31, 33, 36, 37, 38]. In this test, a helium bubble was hit by a planar shock 

moving in air with a  1.22 Mach number. The initial configuration of the computational domain 

and the boundary conditions are as in the previous test; see Figure 8. The helium bubble is 

contaminated with 28% air. Gases properties used for the simulations are given in Table 3. The 

initial conditions were calculated in the same manner as given in the previous test. The initial 

conditions and the constant parameters for the van der Waals and SG EOSs governing air  and 

the helium bubble, respectively, are given in Table 6. 

Table 6: Helium test initial conditions and the van der Waals and SG EOSs parameters 
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Physical 

property 

Air 

pre-shock 

He+28% air 

bubble 

Air 

post-shock 

Density, [kg/m3] 1.1839 0.2153 1.6295 

velocity u, [m/s] 0 0 -115.478

velocity v, [m/s] 0 0 0 

Pressure, [Pa] 101325 101325 159060 

γ 1.4 1.648 1.4 

π [Pa] 0 0 0 

a, [Pa · m6/kg] 5 0 5 

b, [m6/kg] 10−3 0 10−3

The numerical results of the mixture density using the idealized Schlieren function for the helium 

bubble and the surrounding air are shown in Figure 11 using a mesh size of 1500 × 445 cells and a 

CFL number equal to 0.3 at times 28, 44, 58, 72, 82, 102, 245, 427, 674, and 983 µs. In this test, the 

helium bubble is governed by the SG EOS, and the air is considered as a real gas, i.e., governed by the 

van der Waals EOS. These results are in very good agreement with the experimental results [30] and 

the other numerical results [31, 29, 34, 35, 36]. The same results were obtained when both gases were 

governed by the SG EOS. This confirms that the van der Waals EOS reduces to the ideal gas EOS in 

this condition. 

The position history of the interaction between the incident shock and the helium bubble is shown in 

Figure 12. The figure indicates the x positions of the upstream and downstream edges of the helium 

bubble as well as the refracted, incident, and transmitted shock waves. The schematic diagram on the 

right part of Figure 12 shows the points used to construct the x-t diagram. All positions are measured 

at the axis of symmetry except for the incident shock wave and the upstream edge, i.e., the incident 

shock wave is measured either at the top or bottom boundaries of the domain, and the upstream edge 

is measured at 0.0214 above the axis of symmetry. Since our numerical method is diffusive, the points 

were measured at the mean thickness of the interface. The computed mean velocities compared to the 

experimental results [31] and numerical results [32, 35] are given in Table 7. These results are in very 

good agreement with the experimental results, with a maximum estimated error of -1.9%. 

Table 7: A comparison of the computed velocities for the He+28% air bubble case with 
experimental results [31], and numerical results [32, 35]; for key, see Figure 12 

Velocity Vs VR VT Vu Vd Vj 

Experiment [31] 410 900 393 170 145 230 

Qurik and Karni [32] 422 943 377 178 146 227 

% Error +2.9 +4.8 +4.1 +4.7 +0.7 -1.3

Marquina and Mulet [35] 414 943 373 176 153 229 

% Error +1 +4.8 -5.4 +3.4 +5.2 -0.4

Current 407.4 904.64 377.68 166.23 144 223.58 

% Error +0.63 +0.52 -3.9 -2.2 -0.69 -2.8
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Figure 11: The mixture density using idealised Schlieren function for Helium + %28 air bubble-air 

shock interaction at times: (a) 28 μs, (b) 44 μs, (c) 58 μs, (d) 72 μs, (e) 82 μs, (f) 102 μs, (g) 245 μs, 

(h) 427 μs (i) 674μs and (j) 983 μs.

Figure 12: x−t diagram for He + 28% air bubbles (left), key points (right): Vs incident 

shock; VR refracted shock; VT transmitted shock; Vu upstream edge; Vd downstream 

edge and Vj air jet head. 
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5. Conclusions

This study has considered numerical simulations of multiphase flow using the six-equation model with 

various equations of state. All types of equations of state studied in this work were written in the 

general form of the Mie-Gru¨neisen EOS. A diffuse interface method on a structured mesh was used 

to solve the multiphase flow model. The developed numerical method has been based on a multiphase 

Godunov approach with HLL Riemann solver. The accuracy of the method is examined through 

carefully selected test problems in one and two-dimensional space. The method handles the simulation 

of the investigated two-phase flows very well with either the same type of EOS or different types of 

EOS. One-dimensional test problems were compared with the exact solution and the two-dimensional 

bubble shock interaction test. 
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