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A B S T R A C T 
We investigate the structural properties of a graph defined on the ring ℤ𝑛𝑛 × ℤ𝑛𝑛. The Adjacency between two different 
vertices (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥,𝑦𝑦) is determined by the bilinear congruence 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏𝑏𝑏  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛). We analyze three fundamental 
cases, 𝑛𝑛 = 𝑝𝑝2, 2𝑝𝑝 and 𝑝𝑝𝑝𝑝 for distinct odd primes 𝑝𝑝, 𝑞𝑞. We describe the graph's breakdown into unit and non-unit 
vertex subsets. The unit subgraph forms disjoint cliques, with sizes depending on Euler's totient function. In contrast, 
the zero-divisor subgraph shows more complex behaviour governed by annihilation ideals. We establish general 
properties, including degree formulas, determination of maximum clique sizes in each component, determining the 
diameter, computing the girth, locating the graph centers, and finding the measures of vertex and edge connectivity. 
Additionally, we characterize independent sets and prove the existence of Hamiltonian cycles and supereulerian 
properties under certain connectivity conditions. Our results show how the prime factorization of 𝑛𝑛 influences these 
properties. 

Keywords: Bilinear Form, Zero-Divisor Graph, Modular Arithmetic, Hamiltonian Cycle, Maximum Clique, 
Supereulerian Graph. 

 

  𝒏𝒏  قیاسبم الصحیحة الأعداد حلقة  على خطيال الثنائي التطابق بواسطة المعرفة البیانیة للرسوم ةائیالبن الخصائص

 b الأصفر أمیمة، a داعوب حمزة
a ليبيا  ،الزاو�ة ،الزاو�ة جامعة ،العلوم   �لية ،الر�اضيات قسم 
b ليبيا  ،الزاو�ة ،الزاو�ة جامعة ،ال��بية  �لية ،الر�اضيات قسم 

 الم�خص

ℤ𝑛𝑛  ا�حلقة  ع��  مُعرَّف  بيا�ي   لرسم  ائيةالبن  ا�خصائص  درسن × ℤ𝑛𝑛  .  مختلف�ن   رأس�ن  ب�ن  الإرتباط  تحديد  يتم  (𝑎𝑎, 𝑏𝑏)   و(𝑥𝑥, 𝑦𝑦)   التطابق  خلال  من 

𝑎𝑎𝑎𝑎  ا�خطي  الثنائي ≡ 𝑏𝑏𝑏𝑏  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛)  .  و��  أساسية،  حالات  ثلاث  بتحليل  نقوم   𝑛𝑛 = 𝑝𝑝2, 𝑝𝑝𝑝𝑝, 2𝑝𝑝  مختلفة  فردية  أولية  لأعداد  𝑝𝑝, 𝑞𝑞.  نصف 

 �عتمد   أحجام  ذات  منفصلة  (cliques)  تجمعات   للوحدات  ا�جزئي  الرسم  �ش�ل  وحدة.  وغ��  وحدة  رؤوس  مجموعات  إ��  البيا�ي  الرسم  انقسام

 درجة   �شمل  عامة  خصائص  نثبت  .الفناء  ثالياتلم  يخضع  �عقيدا  أك��  سلو�ا  الصفر  قواسمل  ا�جزئي  الرسم  يُظهر  قابل،الم  ��  أو�لر.  دالة  ع��

 مقاييس  و�يجاد الرسم،  مراكز وتحديد  الرسم، مقاس وحساب ،الرسم بيان قطر تحديد ،م�ون  �ل �� تجمعات عظم أ أحجام وتحديد الرؤوس، 

  شروط   تحت  الأو�لر�ة  فائقةو   هاميلتونية  دورات  وجود  ونثبت  المستقلة  ا�جموعات  بوصف  نقوم  ،كذل  إ��  بالإضافة  وا�حواف.  الرؤوس  اتصال

    .ا�خصائص هذه ع�� 𝑛𝑛 للعدد الأو�� التحليل يؤثر كيف  نتائجنا تُظهر معينة. اتصال

 . أو�لري   قفائ  بيا�ي  رسم  تجمّع،  أك��  لتونية، يهام  دورة  ،نمطيال  حسابا�   الصفر،  قواسمل  البيا�ي  رسمال  خطية،  ثنائية  صيغة  : المفتاحية  ال�لمات

1. Introduction  
The study of graphs based on algebraic structures 
has provided deep insight into the connection 
between algebra and graph theory. Among the most 
important types are zero-divisor graphs [1], where 
vertices represent elements of a commutative ring, 
and edges connect pairs whose product is zero. 

These graphs capture valuable information about 
ring properties, including ideal structure, 
annihilators, and zero-divisor behavior. A related 
model is the dot product graph [2], which is defined 
on ℤ𝑛𝑛𝑘𝑘  with adjacency determined by orthogonal 
vectors under the dot product modulo 𝑛𝑛. Such graphs 
have applications in linear algebra over finite rings 

http://journals.zu.edu.ly/index.php/UZJNS
https://journals.zu.edu.ly/index.php/UZJNS
mailto:h.daoub@zu.edu.ly
https://orcid.org/0009-0000-2999-3462
https://orcid.org/0009-0007-1387-6780


  Daoub HA & Lasfar OO. 

Univ Zawia J Nat Sci 2025:2;56-70  57 
http://journals.zu.edu.ly/index.php/UZJNS 

and combinatorial design theory. A third type arises 
from symplectic graphs [3], which are formed from 
alternating bilinear forms over finite fields and show 
high symmetry, with applications in geometry and 
coding theory.  
In this paper, we introduce a new graph, denoted as 
𝐺𝐺𝑛𝑛, defined on ℤ𝑛𝑛 × ℤ𝑛𝑛, where two distinct vertices 
(𝑎𝑎, 𝑏𝑏) and (𝑥𝑥, 𝑦𝑦) are adjacent if and only if 𝑎𝑎𝑎𝑎 ≡
 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛). This adjacency condition generalizes 
the determinant criterion for linear dependence in 
ℤ𝑛𝑛 × ℤ𝑛𝑛 as 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 ≡ 0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) implies (𝑎𝑎, 𝑏𝑏) 
and (𝑥𝑥,𝑦𝑦) are linearly dependent. It also provides a 
modular version of skew-symmetric bilinear forms. 
The graph combines important features of three 
previous models. Like zero-divisor graphs, it shows 
annihilation properties. Like dot product graphs, it 
represents linear dependence. Like symplectic 
graphs, it comes from a bilinear form that has 
inherent orthogonality. Importantly, this graph 
offers a way to examine how modular arithmetic 
affects graph properties. 
The algebraic distinction between units and zero 
divisors in ℤ𝑛𝑛 naturally partitions 𝐺𝐺𝑛𝑛 into two 
subgraphs: one formed by units of ℤ𝑛𝑛 and another by 
zero divisors. The unit subgraph Η𝑛𝑛 exhibits 
symmetry and regularity, decomposing into disjoint 
cliques whose sizes depend on Euler’s totient 
function 𝜙𝜙(𝑛𝑛). On the other hand, the zero-divisor 
subgraph Γ𝑛𝑛 reveals more complex behavior, shaped 
by the interplay of ideals and annihilators in ℤ𝑛𝑛. This 
difference helps us analyze the graph’s topology 
through algebraic perspectives, showing how prime 
factorization affects connectivity, clique formation, 
and cycles. 
For 𝑛𝑛 = 𝑝𝑝2, 𝑛𝑛 = 2𝑝𝑝, and 𝑛𝑛 = 𝑝𝑝𝑝𝑝, where 𝑝𝑝, 𝑞𝑞 are 
distinct odd primes; we show that Η𝑛𝑛 decomposes to 
cliques sized by 𝜙𝜙(𝑛𝑛) and  Γ𝑛𝑛 exhibits annihilation-
driven connectivity. For each case, we derive exact 
degree formulas, characterize connected 
components, and determine maximal cliques. We 
also compute global measures such as diameter, 
girth, and vertex/edge connectivity. A key 
contribution is the identification of Hamiltonian 
cycles and supereulerian properties under specific 
connectivity conditions, linking algebraic 
constraints (e.g., 𝜅𝜅(Γ𝑛𝑛) ≥ 𝛼𝛼(Γ𝑛𝑛) to combinatorial 
phenomena. Notably, for 𝑛𝑛 = 𝑝𝑝2, we show that Γ𝑛𝑛 
becomes a complete graph 𝐾𝐾𝑝𝑝2 , while for 𝑛𝑛 = 𝑝𝑝𝑝𝑝, 
the graph’s complexity reflects the multiplicative 
structure of the Chinese Remainder Theorem.  
To carefully examine these graph structures, we start 
by reviewing basic concepts in ring theory and graph 

theory that support our study. This math and 
counting tools will be crucial for grasping the 
adjacency conditions and connectivity patterns in 
𝐺𝐺𝑛𝑛. 
2. Background 
In this section, we recall some basic concepts in ring 
theory [4-8], focusing on the ring of integers modulo 
𝑛𝑛, denoted ℤ𝑛𝑛. Recall that an element 𝑎𝑎 in ℤ𝑛𝑛 is a 
unit if gcd(𝑎𝑎,𝑛𝑛) = 1, and a zero divisor if 
gcd(𝑎𝑎,𝑛𝑛) > 1(excluding zero). The set of units 
forms a multiplicative group, denoted as 𝕌𝕌𝑛𝑛, while 
zero divisors together with zero, denoted as 𝔻𝔻𝑛𝑛, has 
interesting algebraic properties.  
Closely related to zero divisors is the notion of an 
annihilator. For an element 𝑎𝑎 in a commutative ring 
ℤ𝑛𝑛, the annihilator of 𝑎𝑎, denoted 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎), is the set 
of all elements 𝑟𝑟 ∈ ℤ𝑛𝑛 such that 𝑟𝑟 ⋅ 𝑎𝑎 = 0. This set 
forms an ideal of ℤ𝑛𝑛, capturing algebraic 
obstructions to 𝑎𝑎’s invertibility. When 𝑎𝑎 is a zero 
divisor,  𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) is non-trivial (i.e., contains non-
zero elements), while for units, 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) collapses to 
{0}. In ℤ𝑛𝑛, the structure of 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) is explicitly 
determined by 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎,𝑛𝑛). This ties directly to the 
Euler phi function 𝜙𝜙(𝑛𝑛), which counts the number 
of units in ℤ𝑛𝑛, equivalently, the order of the group of 
units 𝕌𝕌𝑛𝑛. These algebraic properties directly 
influence our graph construction, where adjacency is 
determined by a bilinear form over ℤ𝑛𝑛 × ℤ𝑛𝑛. 
Standard graph notation and terms follow [9-12], 
and any extra conventions will be clearly defined 
when they are introduced. A vertex 𝑣𝑣 is adjacent to 
𝑢𝑢 if the edge 𝑢𝑢 𝑣𝑣 exists. The neighborhood of 𝑢𝑢 is 
the subgraph induced by all vertices adjacent to 𝑢𝑢. A 
connected graph is a graph where a path exists 
between any two vertices. A spanning subgraph of 
𝐺𝐺 retains all vertices but may omit edges. An acyclic 
graph is a graph that contains no cycles, meaning no 
path starts and ends at the same vertex while 
traversing distinct edges. If such a subgraph is 
acyclic and connected, it is a spanning tree.  A vertex 
cut is a vertex subset whose removal disconnects 𝐺𝐺, 
with the smallest such set defining the vertex 
connectivity 𝜅𝜅(𝐺𝐺). Similarly, an edge cut 
disconnects 𝐺𝐺 when removed, and the edge 
connectivity 𝜅𝜅′(𝐺𝐺) is the minimal size of such a cut. 
The Minimum degree 𝛿𝛿(𝐺𝐺) is the smallest degree of 
any vertex in the graph. Thus, removing all edges 
incident to a minimum-degree vertex disconnects it, 
so 𝜅𝜅′(𝐺𝐺) cannot exceed 𝛿𝛿(𝐺𝐺). A clique is a subset of 
mutually adjacent vertices represents a complete 
subgraph.  The clique number 𝜔𝜔(𝐺𝐺) is the maximum 
number of vertices along the complete subgraphs of 
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𝐺𝐺. The eccentricity of a vertex 𝑣𝑣 in a connected 
graph 𝐺𝐺 is the maximum graph distance between 𝑣𝑣 
and any other vertex 𝑢𝑢 of 𝐺𝐺. For a disconnected 
graph, all vertices are defined to have infinite 
eccentricity. The diameter is the greatest distance 
(maximum eccentricity) between any two vertices, 
the girth is the shortest cycle length, and the graph 
centre is the vertex with minimal eccentricity. 
Independent sets, where no two vertices are adjacent. 
A maximal independent set is an independent set that 
is not a proper subset of any other independent set, 
and its size is called the independence number of 𝐺𝐺 
and is usually denoted by 𝛼𝛼(𝐺𝐺). An Euler trail 
traverses every edge exactly once, while a closed 
version is an Eulerian circuit.  
The following sufficient conditions for Hamiltonian 
and supereulerian graphs will be critical for 
analyzing Γ𝑛𝑛 in composite cases (see Propositions 
3.8 and 3.12): 
Theorem 2.1. [12]. A connected graph 𝐺𝐺 is Eulerian 
if and only if all vertices have even degree.   
In contrast, a Hamilton path visits every vertex 
exactly once, and a Hamilton cycle completes this 
traversal into a closed cycle. 
One of the most influential sufficient conditions for 
Hamiltonian graphs was introduced by Chvátal and 
Erdős. The following sufficient conditions will be 
critical for analyzing Hamiltonicity and 
supereulerian properties in Section 3. 
Theorem 2.2. [13]. Let 𝐺𝐺 be an undirected graph. If 
𝜅𝜅(𝐺𝐺) ≥ 𝛼𝛼(𝐺𝐺), then 𝐺𝐺 is hamiltonian. 
The following theorem, due to Bang-Jensen, and 
Alessandro [14], provides a sufficient condition for 
an undirected graph to be supereulerian.   
Theorem 2.3. Let 𝐺𝐺 be an undirected graph on at 
least three vertices. If 𝜆𝜆(𝐺𝐺) ≥ 𝛼𝛼(𝐺𝐺), then 𝐺𝐺 is 
supereulerian. 
This resolves the undirected case of a broader 
conjecture. It proves that such graphs always contain 
a spanning closed trail. Catlin's foundational survey 
[15] established key properties and sufficient 
conditions for supereulerian graphs, along with 
reduction techniques. His conjecture that 3-edge-
connected graphs with 𝛼𝛼(𝐺𝐺) ≤ 2 are supereulerian. 
Catlin later proved this [16], which improved the 
criteria based on connectivity. Han et al. studied a 
weaker sufficient condition for supereulerian graphs. 
They proved that if 𝜅𝜅(𝐺𝐺) ≥ 𝛼𝛼(𝐺𝐺) − 1, then 𝐺𝐺 must 
be either supereulerian or part of a certain infinite 
family of exceptions. 
The vertex set of our graph splits into two 
independent subsets based on the algebraic structure 

of ℤ𝑛𝑛. Let 𝕌𝕌𝑛𝑛 denote the group of units in ℤ𝑛𝑛 and 𝔻𝔻𝑛𝑛 
the set of zero divisors (including zero). We define 
the subgraph H𝑛𝑛 with the vertex set 𝕌𝕌𝑛𝑛  ×  𝕌𝕌𝑛𝑛 which 
consists of pairs where both components are units. 
We also define the subgraph Γ𝑛𝑛 with the vertex set 
𝔻𝔻𝑛𝑛  ×  𝔻𝔻𝑛𝑛 consisting of pairs where both 
components are zero divisors. This partition into unit 
and zero-divisor subgraphs will support the clique 
decomposition of Η𝑛𝑛 (Section 3.1) and the 
annihilation-driven structure of Γ𝑛𝑛 (Section 3.2). 
In H𝑛𝑛, the adjacency relation shows multiplicative 
properties of units, while Γ𝑛𝑛 highlights annihilation 
relations between zero divisors. By looking at these 
subgraphs separately, we can see how the different 
algebraic properties of units and zero divisors 
influence their specific graph structures. 
The graph in this work is created using pairs (𝑥𝑥,𝑦𝑦) ∈
 ℤ𝑛𝑛  ×  ℤ𝑛𝑛, where adjacency is determined by the 
bilinear relation:   

(𝑎𝑎, 𝑏𝑏) ∼ (𝑥𝑥, 𝑦𝑦)   if and only if 𝑎𝑎 𝑦𝑦 ≡  𝑏𝑏 𝑥𝑥   𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛. 
This condition arises naturally from a bilinear form 
ℬ: 𝐴𝐴 × 𝐴𝐴 →  ℤ𝑛𝑛, where 𝐴𝐴 = ℤ𝑛𝑛  ×  ℤ𝑛𝑛 defined as:   

ℬ((𝑎𝑎, 𝑏𝑏), (𝑥𝑥,𝑦𝑦)) = 𝑎𝑎 𝑦𝑦 − 𝑏𝑏 𝑥𝑥.   
Here, two vertices (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥, 𝑦𝑦) are connected 
precisely when the bilinear form evaluates to zero 
modulo 𝑛𝑛.   
The bilinear form ℬ((𝑎𝑎, 𝑏𝑏), (𝑥𝑥,𝑦𝑦)) = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 is 
skew-symmetric ℬ(𝑣𝑣,𝑤𝑤) = −𝐵𝐵(𝑤𝑤, 𝑣𝑣) and linear in 
each argument (see [17]). This induces symmetric 
adjacency in 𝐺𝐺𝑛𝑛. Thus, the graph is simple.    
Unlike classical zero-divisor graphs [1] or dot-
product graphs [2], it combines annihilation 𝑎𝑎𝑎𝑎 ≡
𝑏𝑏𝑏𝑏  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) with bilinear dependence, yielding new 
symmetry properties explored in section 3. 
3. Results 
In this section, we organize the results into different 
cases based on the factorization of 𝑛𝑛. This includes 
𝑛𝑛 = 𝑝𝑝2,𝑛𝑛 = 2𝑝𝑝, and 𝑛𝑛 = 𝑝𝑝𝑝𝑝 for distinct odd primes 
𝑝𝑝 and 𝑞𝑞. We describe how the graph breaks down 
into unit and zero-divisor subgraphs. We also derive 
precise degree formulas and explore connectivity, 
clique structures, and independence number. 
Important findings include identifying maximum 
cliques, calculating diameter and girth, and 
analyzing conditions for Hamiltonicity and 
supereulerian properties. 
1.1. The graph of units 𝚮𝚮𝒏𝒏 
Case 1: If 𝑛𝑛 = 𝑝𝑝 is an odd prime. 
When 𝑛𝑛 is an odd prime, the ring ℤ𝑝𝑝 is a field, 
meaning every non-zero element is a unit. The graph 
Η𝑛𝑛 on 𝕌𝕌𝑝𝑝  ×  𝕌𝕌𝑝𝑝  exhibits a highly symmetric 
structure due to the invertibility of its elements and 
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the bilinear relation applied. The following 
proposition describes its decomposition into disjoint 
cliques.  
Since units in ℤ𝑝𝑝 are closed under multiplication, 
adjacency in Η𝑝𝑝 reduces to scalar multiples, 
inducing a clique structure  
Proposition 3.1. If 𝑝𝑝 is an odd prime, the graph Η𝑝𝑝 
decomposes into (𝑝𝑝 − 1) disjoint components of the 
complete graph 𝐾𝐾𝑝𝑝−1.   
Proof. Since ℤ𝑝𝑝 is a field, the adjacency condition 
𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) holds if and only if (𝑎𝑎, 𝑏𝑏) and 
(𝑥𝑥,𝑦𝑦) are scalar multiples, i.e., (𝑥𝑥,𝑦𝑦) = 𝑘𝑘(𝑎𝑎, 𝑏𝑏) for 
some 𝑘𝑘 ∈ 𝕌𝕌𝑝𝑝. These partitions 𝕌𝕌𝑝𝑝  ×  𝕌𝕌𝑝𝑝 into 
equivalence classes where each class consists of all 
non-zero scalar multiples of a fixed pair (𝑎𝑎, 𝑏𝑏). Each 
equivalence class forms a clique 𝐾𝐾𝑝𝑝−1, as any two 
distinct vertices in the same class are adjacent. Since 
there are (𝑝𝑝 − 1) distinct non-zero scaling factors in 
ℤ𝑝𝑝, the graph decomposes into (𝑝𝑝 − 1) disjoint 
cliques. Thus, Η𝑛𝑛 ≅ (𝑝𝑝 − 1)𝐾𝐾𝑝𝑝−1.    
Corollary 3.1. For 𝑛𝑛 = 𝑝𝑝, the unit subgraph Η𝑛𝑛 has 
edge count:   

|𝐸𝐸(Η𝑛𝑛)| = (𝑝𝑝 − 1)�(𝑝𝑝 − 1) − 𝑖𝑖
𝑝𝑝−1

𝑖𝑖=1

. 

Since we have defined the unit subgraph for prime 
𝑛𝑛, we now extend our discussion to composite 𝑛𝑛 =
𝑝𝑝𝑝𝑝. In this case, the Chinese Remainder Theorem 
adds more structure, resulting in larger cliques 
identified by Euler’s totient function. 
Case 2: If 𝑛𝑛 = 𝑝𝑝 𝑞𝑞 is a composite. 
When 𝑛𝑛 = 𝑝𝑝 𝑞𝑞 for distinct odd primes 𝑝𝑝 and 𝑞𝑞, the 
structure of Η𝑛𝑛 shows the properties of units in the 
ring ℤ𝑝𝑝𝑝𝑝. The following proposition describes its 
decomposition into larger disjoint cliques.   
Proposition 3.2. If 𝑛𝑛 = 𝑝𝑝 𝑞𝑞 for distinct odd primes 
𝑝𝑝 and 𝑞𝑞, the graph Η𝑛𝑛 decomposes into (𝑝𝑝 − 1)(𝑞𝑞 −
1) disjoint cliques of the complete graph 
𝐾𝐾(𝑝𝑝−1)(𝑞𝑞−1).   
Proof. By the Chinese Remainder Theorem, ℤ𝑝𝑝𝑝𝑝 ≅
ℤ𝑝𝑝 × ℤ𝑞𝑞. Thus, the group of units 𝕌𝕌𝑛𝑛 has order 
𝜙𝜙(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1) and every unit 𝑘𝑘 ∈ 𝕌𝕌𝑛𝑛 is 
uniquely determined by its residues modulo 𝑝𝑝 and 𝑞𝑞.  
For any two vertices (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥,𝑦𝑦) in 𝕌𝕌𝑛𝑛 × 𝕌𝕌𝑛𝑛, 
the adjacency condition 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝) is 
satisfied precisely when (𝑥𝑥,𝑦𝑦) is a scalar multiple of 
(𝑎𝑎, 𝑏𝑏) by some unit 𝑘𝑘 ∈ 𝕌𝕌𝑛𝑛 . This occurs because in 
ℤ𝑛𝑛 the modular bilinear is equivalent to the linear 
dependence condition 𝑥𝑥 ≡ 𝑘𝑘𝑘𝑘 and 𝑦𝑦 ≡ 𝑘𝑘𝑘𝑘 for some 
unit 𝑘𝑘. 
For any fixed vertex 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏) ∈ 𝕌𝕌𝑛𝑛 × 𝕌𝕌𝑛𝑛, define 

its proportionality class as follows: 
[𝑣𝑣] = {𝑘𝑘𝑘𝑘: 𝑘𝑘 ∈ 𝕌𝕌𝑛𝑛} 

Since all vertices in [𝑣𝑣] are scalar multiples, then, 
they form a complete subgraph 𝐾𝐾_(𝑝𝑝 − 1)(𝑞𝑞 − 1). 
Moreover, there are exactly (𝑝𝑝 − 1)(𝑞𝑞 − 1) such 
disjoint cliques.  
Corollary 3.2. For 𝑛𝑛 = 𝑝𝑝𝑝𝑝, the unit subgraph Η𝑛𝑛 has 
edge count:   

|𝐸𝐸(Η𝑛𝑛)| = (𝑝𝑝 − 1)(𝑞𝑞 − 1) � (𝑝𝑝 − 1)(𝑞𝑞 − 1) − 𝑖𝑖
(𝑝𝑝−1)(𝑞𝑞−1)

𝑖𝑖=1

. 

Case 3: If  𝑛𝑛 = 𝑝𝑝² for an odd prime 𝑝𝑝. 
When 𝑛𝑛 = 𝑝𝑝², the unit subgraph Η𝑛𝑛 has a special 
structure. Unlike the cases 𝑛𝑛 = 𝑝𝑝 or 𝑛𝑛 = 𝑝𝑝𝑝𝑝, units in 
ℤ𝑝𝑝2 can be expressed in two parts: a unit modulo 𝑝𝑝 
plus a multiple of 𝑝𝑝. The adjacency condition 𝑎𝑎𝑎𝑎 ≡
𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2) creates cliques based on proportional 
pairs, but only within distinct directions modulo 𝑝𝑝. 
This leads to the following precise decomposition.   
Proposition 3.3.  Let 𝑛𝑛 = 𝑝𝑝² where 𝑝𝑝 is an odd 
prime. The graph Η𝑛𝑛 decomposes into 𝑝𝑝(𝑝𝑝 − 1) 
disjoint cliques, each isomorphic to 𝐾𝐾𝑝𝑝−1.   
Proof:  The group of units 𝕌𝕌𝑝𝑝2  has order 𝜙𝜙(𝑝𝑝2) =
𝑝𝑝(𝑝𝑝 − 1). By the Chinese Remainder Theorem, 
every unit 𝑢𝑢 ∈  𝕌𝕌𝑝𝑝2 can be expressed uniquely as:   
𝑢𝑢 ≡ 𝑎𝑎 + 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2),   where 𝑎𝑎 ∈ {1, … , 𝑝𝑝 −

1}, 𝑏𝑏 ∈ {0, … , 𝑝𝑝 − 1}. 
Here, 𝑎𝑎 is a unit modulo 𝑝𝑝, and 𝑏𝑏 parametrizes the 
lift to ℤ𝑝𝑝2  
Two vertices (𝑎𝑎, 𝑏𝑏), (𝑥𝑥,𝑦𝑦) ∈ 𝕌𝕌𝑝𝑝2 × 𝕌𝕌𝑝𝑝2 are adjacent 
in Η𝑛𝑛 if and only if:   

   𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2). 
For units, this simplifies to the proportionality 
condition (𝑥𝑥,𝑦𝑦) ≡ 𝑘𝑘(𝑎𝑎, 𝑏𝑏) (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2) for some 𝑘𝑘 ∈
𝕌𝕌𝑝𝑝2.  Now, fix a vertex 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏). Its scalar 
multiple class is:   

     [𝑣𝑣] = {𝑘𝑘𝑘𝑘: 𝑘𝑘 ∈ 𝕌𝕌𝑝𝑝2}. 
By considering residues modulo 𝑝𝑝, there are exactly 
𝑝𝑝 − 1 distinct values of 𝑘𝑘 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) because 𝑎𝑎 ≢
 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). Each such 𝑘𝑘 can be lifted to 𝑝𝑝 possible 
values modulo 𝑝𝑝2, but only 𝑝𝑝 − 1 are units in ℤ𝑝𝑝2.  
Consequently, the class [𝑣𝑣] forms a complete 
subgraph𝐾𝐾𝑝𝑝−1, and there are 𝜙𝜙(𝑝𝑝2) = 𝑝𝑝(𝑝𝑝 − 1) 
such disjoint cliques, corresponding to each distinct 
proportionality class 𝑣𝑣 modulo 𝑝𝑝.  
Crucially, if two vertices (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥,𝑦𝑦) are not 
scalar multiples modulo 𝑝𝑝, then 𝑎𝑎𝑎𝑎 ≢ 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), 
which implies 𝑎𝑎𝑎𝑎 ≢ 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2). Thus, no edges 
exist between distinct cliques.   
Corollary 3.3. For 𝑛𝑛 = 𝑝𝑝², the unit subgraph Η𝑛𝑛 has 
edge count:   
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|𝐸𝐸(Η𝑛𝑛)| = 𝑝𝑝(𝑝𝑝 − 1) � 𝑝𝑝(𝑝𝑝 − 1) − 𝑖𝑖
𝑝𝑝(𝑝𝑝−1)

𝑖𝑖=1

. 

Example 3.1.  For 𝑝𝑝 = 3, Η9 consists of 6 disjoint 
copies of 𝐾𝐾6 (edges) as shown in Figure 1. Units in 
𝕌𝕌9 are {1, 2, 4, 5, 7, 8}, and adjacency holds if and 
only if (𝑥𝑥,𝑦𝑦) ≡ 𝑘𝑘(𝑎𝑎, 𝑏𝑏) (𝑚𝑚𝑚𝑚𝑚𝑚 9) for 𝑘𝑘 ∈ 𝕌𝕌9.   
Remark 3.1. In all three cases mentioned, the unit 
subgraph Η𝑛𝑛 shows:   
i. Disconnected components (cliques) mean that 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) = ∞ for vertices in different cliques.   

ii. Each clique 𝐾𝐾𝑝𝑝−1, 𝐾𝐾(𝑝𝑝−1)(𝑞𝑞−1) and 𝐾𝐾𝑝𝑝(𝑝𝑝−1) 
includes triangles but has no cycles shorter than 
3. i.e., 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ(Η𝑛𝑛) = 3. 

This uniformity occurs because adjacency in Η𝑛𝑛 is 
based only on scalar multiples within disjoint 
equivalence classes.  

While the unit subgraph H𝑛𝑛 shows clear clique 
decompositions, the zero-divisor subgraph Γ𝑛𝑛 has 
more complexity because of annihilation relations. 
We will now analyze Γ𝑛𝑛, where adjacency represents 
ideal interactions instead of multiplicative inverses. 
1.2. The graph of zero divisors 𝚪𝚪𝒏𝒏 
 In this section, we examine the graph Γ𝑛𝑛, which 
includes pairs of zero divisors in the ring ℤ𝑛𝑛 × ℤ𝑛𝑛. 
Adjacency is defined by the bilinear form ℬ. This 
bilinear congruence captures modular orthogonality 

and shows how zero divisors interact. For composite 
𝑛𝑛, the structure of Γ𝑛𝑛 is strongly affected by the 
prime factorization of 𝑛𝑛. This leads to distinct 
connectivity patterns, clique formations, and 
maximal independent sets. 
Case 1: If 𝑛𝑛 = 2𝑝𝑝, where 𝑝𝑝 is an odd prime. 
Let 𝑝𝑝 is an odd prime. The set of zero divisors 𝔻𝔻𝑛𝑛 
can be written as 𝔻𝔻𝑛𝑛 = 𝑀𝑀2 ∪  𝑀𝑀𝑝𝑝, where 𝑀𝑀2 =
{0, 2, 4, 6, . . . , 2𝑝𝑝 − 2}, is the principal ideal 
generated by 2 in ℤ𝑛𝑛, and 𝑀𝑀𝑝𝑝 = {0, 𝑝𝑝}. Furthermore, 
we refer to 𝑀𝑀2/{0} by 𝑀𝑀2

∗ and the set 𝑀𝑀𝑝𝑝/{0} by 𝑀𝑀𝑝𝑝
∗. 

The sets 𝑀𝑀2 and 𝑀𝑀𝑝𝑝 form additive subgroups of ℤ𝑛𝑛, 
and they exhibit an annihilator duality:   

i. Every element 𝑘𝑘 ∈ 𝑀𝑀2 satisfies 𝑘𝑘 ⋅ 𝑝𝑝 ≡
0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), meaning 𝑀𝑀2 ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝).   

ii. Conversely, 𝑝𝑝 annihilates all elements of 
𝑀𝑀2, i.e., 𝑀𝑀𝑝𝑝 ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) for any 𝑘𝑘 ∈ 𝑀𝑀2.   

This structure highlights the interplay between the 
ideals 𝑀𝑀2 and 𝑀𝑀𝑝𝑝, where each subgroup consists 
precisely of the annihilators of the other.   
We partition the set of vertices 𝔻𝔻2𝑝𝑝 × 𝔻𝔻2𝑝𝑝 into the 
following subsets: 

 𝑆𝑆0 = {(0,0), (0, 𝑝𝑝), (𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝)}, 
 𝑆𝑆1 = {(𝑎𝑎𝑖𝑖 , 0): 𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 
 𝑆𝑆2 = {(0, 𝑎𝑎𝑖𝑖): 𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 
 𝑆𝑆3 = {(𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑖𝑖): 𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 
 𝑆𝑆4 = {(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖): 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}. 
 𝑆𝑆5 = {(𝑝𝑝, 𝑎𝑎𝑖𝑖): 𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 
 𝑆𝑆6 = {(𝑎𝑎𝑖𝑖 , 𝑝𝑝): 𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀2

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 

We now examine the zero-divisor graph Γ2𝑝𝑝, starting 
with a classification of vertex degrees. This basic 
analysis shows how annihilation relations in ℤ𝑛𝑛 
determine connectivity patterns in Γ2𝑝𝑝. 
Proposition 3.4. For 𝑎𝑎, 𝑏𝑏 ∈ 𝑀𝑀2

∗ the degree of a 
vertex 𝑣𝑣 ∈ 𝑉𝑉(Γ2𝑝𝑝) are classified as follows: 

deg(𝑣𝑣) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝𝑝2 + 2𝑝𝑝

2𝑝𝑝 + 1
2𝑝𝑝 − 1

𝑖𝑖𝑖𝑖 𝑣𝑣 = (0, 0)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 0) 𝑜𝑜𝑜𝑜 (0, 𝑎𝑎)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 𝑝𝑝) 𝑜𝑜𝑜𝑜 (𝑝𝑝, 𝑎𝑎)

𝑝𝑝2 + 𝑝𝑝 − 1
𝑝𝑝 + 2
𝑝𝑝2

𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑝𝑝, 0) 𝑜𝑜𝑜𝑜 (0, 𝑝𝑝)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏) 
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑝𝑝, 𝑝𝑝)

 

Proof: By definition, the vertex 𝑣𝑣 = (0, 0) is 
adjacent to each single vertex in 𝑉𝑉(Γ𝑛𝑛), and since the 
number of vertices in this graph is |𝑉𝑉(Γ𝑛𝑛)| =

�𝑛𝑛 − 𝜙𝜙(𝑛𝑛)�2 = (𝑝𝑝 + 1)2 = 𝑝𝑝2 + 2𝑝𝑝 + 1. Since the 
adjacency relation is defined on different vertices, 
then we have 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: The graph of Units H9 
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deg(𝑣𝑣) = 𝑝𝑝2 + 2𝑝𝑝. 
For 𝑎𝑎 ∈ 𝑀𝑀2

∗, let 𝑣𝑣 = (𝑎𝑎, 0), then 𝑣𝑣 is adjacent to all 
vertices with linear dependence, i.e., to each vertex 
in 𝑆𝑆1′ = 𝑆𝑆1/{(𝑎𝑎, 0)}. Also, 𝑣𝑣 is adjacent to vertices 
with annihilator entries, i.e., 𝑆𝑆0, where 0, 𝑝𝑝 ∈
𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎). Moreover, 𝑣𝑣 is adjacent to the vertices in 
𝑆𝑆6,  Since |𝑆𝑆1′| = 𝑝𝑝 − 2, |𝑆𝑆0| = 4, and |𝑆𝑆6| = 𝑝𝑝 − 1. 
Thus,  

deg(𝑣𝑣) = (𝑝𝑝 − 2) + (𝑝𝑝 − 1) + 4 = 2𝑝𝑝 + 1. 
In the same way, the degree of the vertex 𝑣𝑣 = (0, 𝑎𝑎) 
is 2𝑝𝑝 + 1. 
Consider 𝑣𝑣 = (𝑎𝑎, 𝑝𝑝), then 𝑣𝑣 is adjacent to vertices 
with linear dependence, i.e., to vertices in 𝑆𝑆6′ =
𝑆𝑆6/{(𝑎𝑎, 𝑝𝑝)}, and to the vertices with annihilator 
entries, i.e., 𝑆𝑆0′ = 𝑆𝑆0/{(𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝)}. The third type 
of adjacent vertices to 𝑣𝑣 is mixed vertices 𝑆𝑆1,  Since 
|𝑆𝑆6′ | = 𝑝𝑝 − 2, |𝑆𝑆0′ | = 2, and |𝑆𝑆1| = 𝑝𝑝 − 1. Thus, 

deg(𝑣𝑣) = (𝑝𝑝 − 2) + (𝑝𝑝 − 1) + 2 = 2𝑝𝑝 − 1. 
Likewise, the degree of the vertex 𝑣𝑣 = (𝑝𝑝, 𝑎𝑎) is 2𝑝𝑝 −
1. 
Let 𝑣𝑣 = (𝑝𝑝, 0), since 𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝) = 𝑀𝑀2, then the vertex 
𝑣𝑣 is adjacent to vertices with annihilator entries, i.e., 
𝑆𝑆4, and to the mixed vertices in the set 𝑆𝑆5. Since 
|𝑆𝑆4| = 𝑝𝑝2, |𝑆𝑆5| = 𝑝𝑝 − 1. Thus, 

deg(𝑣𝑣) = 𝑝𝑝2 + 𝑝𝑝 − 1 
Similarly, the degree of the vertex 𝑣𝑣 = (0, 𝑝𝑝) is 𝑝𝑝2 +
𝑝𝑝 − 1. 
Now, we investigate the degree of the vertex 𝑣𝑣 =
(𝑝𝑝, 𝑝𝑝). The vertex 𝑣𝑣 is adjacent to the vertices in the 
set 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4 and the vertex (0, 0),  That means 
there are 3(𝑝𝑝 − 1) + (𝑝𝑝2 − 3𝑝𝑝 + 2) + 1 = 𝑝𝑝2 
vertices adjacent to this vertex. Since (𝑝𝑝, 𝑝𝑝) is not 
adjacent to (𝑎𝑎, 𝑝𝑝) nor to (𝑝𝑝, 𝑎𝑎) for any 𝑎𝑎 ∈ 𝑀𝑀2, 
because the adjacency condition fails. Thus,  

deg (𝑣𝑣) = 𝑝𝑝2. 
Finally, let 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏) for any 𝑎𝑎, 𝑏𝑏 ∈ 𝑀𝑀2

∗. It is clear 
that (𝑎𝑎, 𝑏𝑏) is adjacent to the vertices in the set 𝑆𝑆0. By 
the definition of the graph Γ2𝑝𝑝, 𝑣𝑣 is adjacent to 
vertices with multiple coordinates (𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚), which 
are 𝑝𝑝 − 2. Thus,  

deg(𝑣𝑣) = 4 + (𝑝𝑝 − 2 = 𝑝𝑝 + 2.  
Corollary 3.4. The edge connectivity of Γ2𝑝𝑝, is 
𝜅𝜅′(Γ𝑛𝑛) = 𝑝𝑝 + 2. 
Proposition 3.5. The graph Γ2𝑝𝑝 satisfies the 
following properties: 
i.  The vertex (0,0) is the unique centre, with 

eccentricity 1. 
ii. The diameter of Γ𝑛𝑛 is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(Γ𝑛𝑛) = 2.   
iii. The girth of Γ𝑛𝑛 is 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ(Γ𝑛𝑛) = 3. 

Proof: (i.) Consider 𝑣𝑣 = (0, 0). Since 𝑣𝑣 is adjacent 

to all vertices in the graph Γ2𝑝𝑝, then the eccentricity 
of 𝑣𝑣 is 1, and for any other vertex (𝑎𝑎, 𝑏𝑏), its 
eccentricity is at least 2 from some nonadjacent 
vertex (𝑥𝑥,𝑦𝑦). Hence, 𝑣𝑣 is the unique centre. 
(ii.) Since 𝑣𝑣 = (0, 0) is a unique center of the graph 
Γ𝑛𝑛 with eccentricity 1, then for any two nonadjacent 
vertices (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥, 𝑦𝑦), they share 𝑣𝑣 as a common 
neighbour. Thus, the greatest distance between them 
is 2, which proves (ii). 
(iii.) From the definition of ℬ, the graph Γ2𝑝𝑝 is simple 
with no multiple edges, so 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ�Γ2𝑝𝑝� > 2. For any 
adjacent vertices (𝑎𝑎, 𝑏𝑏)  and (𝑥𝑥,𝑦𝑦), the set 
[{(0, 0), (𝑎𝑎, 𝑏𝑏), (𝑥𝑥,𝑦𝑦)}] induces a 3-cycle, which is 
the smallest possible. Hence, the proof follows.  
Proposition 3.6.  For any fixed 𝑎𝑎 ∈ 𝑀𝑀2

∗, the set   
𝐼𝐼𝑎𝑎  =  {(𝑎𝑎, 𝑏𝑏): 𝑏𝑏 ∈ 𝑀𝑀2} ∪ {(0, 𝑎𝑎)} 

is a maximum independent vertex set in Γ2𝑝𝑝 with 
independence number 𝛼𝛼(Γ2𝑝𝑝) = 𝑝𝑝 + 1.  
Proof:  For any two vertices (𝑥𝑥,𝑦𝑦) and (𝑎𝑎, 𝑏𝑏) in 𝐼𝐼𝑎𝑎, 
adjacency requires 𝑎𝑎 𝑦𝑦 ≡ 𝑏𝑏 𝑥𝑥  (𝑚𝑚𝑚𝑚𝑚𝑚 2𝑝𝑝), which 
holds only if they are linearly independent. For 
(𝑎𝑎, 𝑏𝑏) and (0, 𝑎𝑎), adjacency requires 𝑎𝑎 ⋅ 𝑎𝑎 ≡ 𝑏𝑏. 0 ≡
  (𝑚𝑚𝑚𝑚𝑚𝑚 2𝑝𝑝), i.e., 0 ≡ 𝑎𝑎2 (𝑚𝑚𝑚𝑚𝑚𝑚 2𝑝𝑝). Since 0 ≢
𝑎𝑎2 (𝑚𝑚𝑚𝑚𝑚𝑚 2𝑝𝑝) for any 𝑎𝑎 ∈ 𝑀𝑀2

∗. Thus, (𝑎𝑎, 𝑏𝑏) and 
(0, 𝑎𝑎) are not adjacent. Since all vertices in 
{(𝑎𝑎, 𝑏𝑏):𝑏𝑏 ∈ 𝑀𝑀2} are linearly independent, and no 
annihilators are involved in {(𝑎𝑎, 𝑏𝑏):𝑏𝑏 ∈ 𝑀𝑀2}. Thus, 
distinct vertices in this set are non-adjacent.   
To prove that 𝐼𝐼𝑎𝑎 is the maximum, consider adding 
any vertex (𝑥𝑥,𝑦𝑦) ∉ 𝐼𝐼𝑎𝑎. Thus, (𝑥𝑥,𝑦𝑦) ∉
{{0,0), (0, 𝑝𝑝), (𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝), (𝑎𝑎, 𝑝𝑝), (𝑝𝑝, 𝑎𝑎)}, which 
implies (𝑥𝑥,𝑦𝑦) ∈ {(𝑚𝑚 𝑎𝑎, 𝑎𝑎): 𝑎𝑎 ∈ 𝑀𝑀2

∗}, for some 
positive integer 𝑚𝑚, then an edge will be created with 
at least one vertex in 𝐼𝐼𝑎𝑎 such as (𝑚𝑚 𝑎𝑎, 𝑎𝑎) 
and (𝑎𝑎, 𝑘𝑘 𝑎𝑎), for some 𝑘𝑘 satisfies 𝑘𝑘.𝑚𝑚 = 1. Hence  
𝐼𝐼𝑎𝑎 is the maximum. 
Since the cardinal number of the set 𝑀𝑀2

∗ is 𝑝𝑝 − 1. 
Thus, there are 𝑝𝑝 − 1 choices for 𝑏𝑏 ≠ 0 in (𝑎𝑎, 𝑏𝑏). 
Including (𝑎𝑎, 0) and (0, 𝑎𝑎) adds 𝑝𝑝 − 1 more vertices. 
Adjusting for distinctness, the total is (𝑝𝑝 − 1) + 2 =
𝑝𝑝 + 1.  
Remark 3.2. 
i. The set 𝐼𝐼𝑎𝑎 is not unique; another maximum 

independent set exist, which is {(𝑏𝑏, 𝑎𝑎): 𝑏𝑏 ∈
𝑀𝑀2} ∪ {(𝑎𝑎, 0)} in Γ2𝑝𝑝,  

ii. There are 2(𝑝𝑝 − 1) maximum independent sets 
in Γ2𝑝𝑝. 

iii. The vertex (0, 𝑎𝑎) ∈ 𝐼𝐼𝑎𝑎 can be replaced with the 
vertex (𝑝𝑝, 𝑎𝑎).   

iv. All maximum independent sets of size 𝑝𝑝 + 1  are 
isomorphic. 
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Example 3.2. Consider 𝑛𝑛 = 2 × 7, the set: 
𝐼𝐼2 = {(2, 0), (2, 2), (2, 4), (2, 6), 

 (2, 8), (2, 10), (2, 12), (0, 2)} 
 is an independent set. 
Proposition 3.7.  The vertex connectivity of Γ2𝑝𝑝, is 
𝜅𝜅(Γ2𝑝𝑝) = 4. 
Proof: The vertex (0, 0) is connected to all the 
vertices in Γ2𝑝𝑝. If we remove it, the remaining 
vertices form a connected subgraph. The vertices 
{(0, 𝑝𝑝), (𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝)} save the connectivity with the 
vertices in 𝑀𝑀2 × 𝑀𝑀2. To isolate the vertices in 
𝑀𝑀2 × 𝑀𝑀2, we must remove all vertices 
(0, 0), (0, 𝑝𝑝), (𝑝𝑝, 0) and (𝑝𝑝, 𝑝𝑝), as each component is 
presented by linear combinations of a vertex (𝑎𝑎, 𝑏𝑏) ∈
𝑀𝑀2 × 𝑀𝑀2, so the resulting subgraph Γ2𝑝𝑝/
{(0, 0), (0, 𝑝𝑝), (𝑝𝑝, 0), (𝑝𝑝, 𝑝𝑝)} isomorphic to (𝑝𝑝 −
1)𝐾𝐾𝑝𝑝−1. Hence 𝜅𝜅(Γ2𝑝𝑝) = 4. 
Proposition 3.8. The graph Γ2𝑝𝑝 contains only two 
distinct maximum cliques of size 2𝑝𝑝.   
First Clique:   
𝒞𝒞𝐿𝐿 = { (0, 0), (2, 0), (4, 0), … , (2𝑝𝑝

− 2, 0), (0,𝑝𝑝), (2, 𝑝𝑝), … , (2𝑝𝑝 − 2,𝑝𝑝)}. 
Second Clique:   
𝒞𝒞𝑅𝑅 =  { (0, 0), (0, 2), (0, 4), … , (0, 2𝑝𝑝 

− 2), (𝑝𝑝, 0), (𝑝𝑝, 2), … , (𝑝𝑝, 2𝑝𝑝 − 2) }. 
 Proof: Consider 𝒞𝒞𝐿𝐿, from the definition of Γ2𝑝𝑝, it is 
clear that any two vertices (𝑎𝑎, 0) and (𝑏𝑏, 0) are 
adjacent. Also, any two vertices (𝑎𝑎, 0) and (𝑐𝑐, 𝑝𝑝) are 
adjacent. In addition, any two (𝑐𝑐, 𝑝𝑝) and (𝑑𝑑, 𝑝𝑝) are 
adjacent.  The clique 𝒞𝒞𝑅𝑅 is symmetric to 𝒞𝒞𝐿𝐿, with 
coordinates swapped.   
To prove the maximality, consider adding any vertex 
outside 𝒞𝒞𝐿𝐿 (e.g., (𝑝𝑝, 𝑝𝑝) breaks completeness:  (𝑝𝑝, 𝑝𝑝) 
is not adjacent to (2, 𝑝𝑝) because 0 ≢ 𝑝𝑝2  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 
fails.  
The number of vertices in both cliques is: 

|𝒞𝒞𝑅𝑅| = |𝒞𝒞𝐿𝐿| = �
2𝑝𝑝 −  2

2
+ 1� × 2 

= (𝑝𝑝 −  1 +  1) × 2 =  2𝑝𝑝. 
and the vertex degree is 2𝑝𝑝 −  1.  
Remark 3.3. 
i. The maximum cliques 𝒞𝒞𝑅𝑅 and 𝒞𝒞𝐿𝐿 intersect only 

at (0, 0).   
ii. Both cliques exploit the universal adjacency of 

(0, 0) and the zero-product property of 𝑀𝑀2 ∪𝑀𝑀𝑝𝑝.   

Corollary 3.5 The clique number for the graph Γ2𝑝𝑝 
is: 

𝜔𝜔�Γ2𝑝𝑝� = 2𝑝𝑝 
Proposition 3.9. For an odd prime 𝑝𝑝, the graph Γ2𝑝𝑝 
is supereulerian.  

Proof: To prove that Γ2𝑝𝑝 is supereulerian, we 
construct a spanning closed trail.  
The subgraphs induced by the subsets 𝑆𝑆0 to 𝑆𝑆6 
exhibit the following properties: 

i. The subgraph defined on 𝑆𝑆1 forms a clique 
𝐾𝐾𝑝𝑝−1, 𝑆𝑆1 ∪ 𝑆𝑆6 and 𝑆𝑆3 ∪ 𝑆𝑆5 form a larger 
clique 𝐾𝐾2(𝑝𝑝−1). 

ii. The subgraph defined on 𝑆𝑆4 consists of 𝑝𝑝 − 2 
disjoint cliques, each isomorphic to 𝐾𝐾𝑝𝑝−1, 
denoted as the following: 

𝐴𝐴1 = {(𝑎𝑎1𝑖𝑖 , 𝑏𝑏1𝑖𝑖): 𝑎𝑎1𝑖𝑖 , 𝑏𝑏1𝑖𝑖 ∈ 𝑀𝑀2
∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 

𝐴𝐴2 = {(𝑎𝑎2𝑖𝑖 , 𝑏𝑏2𝑖𝑖): 𝑎𝑎2𝑖𝑖 , 𝑏𝑏2𝑖𝑖 ∈ 𝑀𝑀2
∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 

 ⋮ 

𝐴𝐴𝑝𝑝−2 = {(𝑎𝑎(𝑝𝑝−2)𝑖𝑖 , 𝑏𝑏(𝑝𝑝−2)𝑖𝑖): 𝑎𝑎(𝑝𝑝−2)𝑖𝑖 , 𝑏𝑏(𝑝𝑝−2)𝑖𝑖 ∈ 𝑀𝑀2
∗, 

 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1}, 

for each  𝑗𝑗 ∈ {1, 2, … , 𝑝𝑝 − 2}  and 𝑎𝑎𝑗𝑗𝑗𝑗 ≠ 𝑏𝑏𝑗𝑗𝑗𝑗  
the subgraphs of Γ2𝑝𝑝 on the sets 𝐴𝐴𝑗𝑗 forms 
cliques 𝐾𝐾𝑝𝑝−1.  

Since every complete graph contains a Hamiltonian 
path, denoted 𝑃𝑃𝑆𝑆𝑖𝑖  and 𝑃𝑃𝐴𝐴𝑖𝑖 , we can construct a 
spanning closed trail by concatenating paths from 
each subset as follows:  
�(0,0),𝑃𝑃𝑆𝑆1� ∪ 𝑃𝑃𝑆𝑆6 ∪ �(0, 𝑝𝑝),𝑃𝑃𝑆𝑆2� ∪ �(𝑝𝑝, 0),𝑃𝑃𝑆𝑆3� ∪ 𝑃𝑃𝑆𝑆5

∪ �(𝑝𝑝, 𝑝𝑝),𝑃𝑃𝐴𝐴1� ∪ �(0,0),𝑃𝑃𝐴𝐴2�
∪ �(0,0),𝑃𝑃𝐴𝐴3� ∪ …

∪ �(0,0),𝑃𝑃𝐴𝐴𝑝𝑝−2 , (0,0)� 

This trail is closed and spans all vertices of Γ2𝑝𝑝, 
proving the supereulerian property.  

The closed trail in Proposition 3.9 results from 
systematically connecting paths across the grouped 
subsets 𝑆𝑆0 to 𝑆𝑆6. Figure 2 shows this process for Γ10  
(where 𝑝𝑝 = 5), demonstrating how Hamiltonian 
paths from cliques 𝐴𝐴𝑖𝑖 and connector vertices like 
(0,0) come together into a single cycle.  

Corollary 3.6. For 𝑝𝑝 = 3, the graph Γ6 is 
Hamiltonian. 

Proof: Using the same partition as above, the set 𝑆𝑆4 
in Γ6 reduces to a single clique. The constructed 
closed trail simplifies to: 

 �(0,0),𝑃𝑃𝑆𝑆1� ∪ 𝑃𝑃𝑆𝑆6 ∪ �(0, 3),𝑃𝑃𝑆𝑆2� ∪
�(3, 0),𝑃𝑃𝑆𝑆3� ∪ 𝑃𝑃𝑆𝑆5 ∪ �(3, 3),𝑃𝑃𝑆𝑆4 , (0, 0)�, 

Since all edges in this trail are distinct and every 
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vertex is visited exactly once; the trail forms a 
Hamilton cycle. Thus, Γ6  is Hamiltonian.   

Case 2: if 𝑛𝑛 = 𝑝𝑝 𝑞𝑞 is a composite. 

Let 𝑛𝑛 = 𝑝𝑝𝑝𝑝, where 𝑝𝑝 and 𝑞𝑞 are distinct primes with 
𝑝𝑝 > 𝑞𝑞. The set of zero divisors in ℤ𝑝𝑝𝑝𝑝 decomposes 
into the union of two principal ideals:   

𝔻𝔻𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑝𝑝 ∪𝑀𝑀𝑞𝑞  
where 𝑀𝑀𝑞𝑞 = { 𝑘𝑘𝑘𝑘: 0 ≤  𝑘𝑘 ≤ 𝑝𝑝 − 1} is the maximal 
ideal generated by 𝑞𝑞, and 𝑀𝑀𝑝𝑝 = {𝑚𝑚𝑚𝑚 ∶  0 ≤ 𝑚𝑚 ≤
𝑞𝑞 − 1} is the ideal generated by 𝑝𝑝. These sets exhibit 
an annihilation duality:   
i. Every 𝑥𝑥 ∈ 𝑀𝑀𝑝𝑝 satisfies 𝑥𝑥 ⋅ 𝑞𝑞 ≡ 0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), 

meaning 𝑀𝑀𝑝𝑝 ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞).   
ii. Similarly, every 𝑦𝑦 ∈ 𝑀𝑀𝑞𝑞 satisfies 𝑦𝑦 ⋅ 𝑝𝑝 ≡

0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), so 𝑀𝑀𝑞𝑞 ⊆ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝).   

This decomposition reflects the Chinese Remainder 
Theorem, as ℤ𝑛𝑛 ≅ ℤ𝑝𝑝 × ℤ𝑞𝑞 , and the zero divisors 
arise precisely from the non-trivial multiples of 𝑝𝑝 
and 𝑞𝑞.   
When 𝑛𝑛 = 𝑝𝑝𝑝𝑝 for distinct odd primes 𝑝𝑝, and 𝑞𝑞, the 
adjacency condition induces a rich structure 
reflecting the arithmetic of ℤ𝑛𝑛. The vertex degrees in 
Γ𝑝𝑝𝑝𝑝 reveal fundamental properties of this graph, 
including its connectivity, symmetry, and 
relationship to zero-divisor interactions in ℤ𝑛𝑛 × ℤ𝑛𝑛.  

Before we establish key propositions characterizing 
degrees of vertices, we partition the vertex set into 
subsets 𝑆𝑆0 through 𝑆𝑆12, as follows: 

𝑆𝑆0 = {(0, 0)}, 
𝑆𝑆1 = �(𝑎𝑎𝑖𝑖 , 0):𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞

∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 

𝑆𝑆2 = �(0,𝑎𝑎𝑖𝑖):𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 

𝑆𝑆3 = �(𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖):𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 

𝑆𝑆4 = �(𝑎𝑎𝑖𝑖 ,𝑝𝑝𝑝𝑝 − 𝑎𝑎𝑖𝑖):𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 

𝑆𝑆5 = �(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖):𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 

𝑆𝑆6 = �(𝑥𝑥𝑖𝑖 , 0):𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆7 = �(0, 𝑥𝑥𝑖𝑖): 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆8 = �(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖): 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆9 = �(𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑖𝑖): 𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆10 = �(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖): 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆11 = ��𝑎𝑎𝑖𝑖 ,𝑦𝑦𝑗𝑗�:𝑎𝑎𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞
∗ ,𝑦𝑦𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝

∗ , 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1, 1
≤ 𝑗𝑗 ≤ 𝑞𝑞 − 1�, 

𝑆𝑆12 = �(𝑥𝑥𝑖𝑖 , 𝑏𝑏𝑖𝑖):𝑥𝑥𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝
∗ , 𝑏𝑏𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞

∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1, 1
≤ 𝑗𝑗 ≤ 𝑝𝑝 − 1�, 

The sizes of these subsets are: 

|𝑆𝑆1| = |𝑆𝑆2| = |𝑆𝑆3| = |𝑆𝑆4| = 𝑝𝑝 − 1, 

|𝑆𝑆5| = (𝑝𝑝 − 1)(𝑝𝑝 − 1) − 2(𝑝𝑝 − 1) = 𝑝𝑝2 − 4𝑝𝑝 + 3, 

|𝑆𝑆6| = |𝑆𝑆7| = |𝑆𝑆8| = |𝑆𝑆9| = 𝑞𝑞 − 1, 

|𝑆𝑆10| = (𝑞𝑞 − 1)(𝑞𝑞 − 1) − 2(𝑞𝑞 − 1) = 𝑞𝑞2 − 4𝑞𝑞 + 3 

|𝑆𝑆11| = |𝑆𝑆12| = (𝑝𝑝 − 1)(𝑞𝑞 − 1) 

Proposition 3.10. For 𝑥𝑥, 𝑦𝑦 ∈ 𝑀𝑀𝑝𝑝
∗, and 𝑎𝑎, 𝑏𝑏 ∈ 𝑀𝑀𝑞𝑞

∗, the 
degree of vertices in Γ𝑝𝑝𝑝𝑝 are classified as follows: 

deg(𝑣𝑣) =

⎩
⎪⎪
⎨

⎪⎪
⎧(𝑝𝑝 + 𝑞𝑞)2 − 2(𝑝𝑝 + 𝑞𝑞)
𝑞𝑞2 + (𝑝𝑝 − 1)𝑞𝑞 − 1

𝑝𝑝𝑝𝑝 − 1

𝑖𝑖𝑖𝑖 𝑣𝑣 = (0, 0)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 0) 𝑜𝑜𝑜𝑜 (0,𝑎𝑎)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 𝑥𝑥) 𝑜𝑜𝑜𝑜 (𝑥𝑥, 𝑎𝑎)

𝑝𝑝2 + (𝑞𝑞 − 1)𝑝𝑝 − 1
𝑞𝑞2 + 𝑝𝑝 − 2
𝑝𝑝2 + 𝑞𝑞 − 2

𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑥𝑥, 0) 𝑜𝑜𝑜𝑜 (0,𝑥𝑥)
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏) 
𝑖𝑖𝑖𝑖 𝑣𝑣 = (𝑥𝑥,𝑦𝑦)

 

Proof: Since the vertex 𝑣𝑣 = (0, 0) is adjacent to 
each single vertex in 𝑉𝑉(Γ𝑝𝑝𝑝𝑝), and the adjacency 
relation is defined on different vertices, then 

deg(𝑣𝑣) = �𝑛𝑛 − 𝜙𝜙(𝑛𝑛)�2 − 1 = (𝑝𝑝 + 𝑞𝑞)2 − 2(𝑝𝑝 + 𝑞𝑞). 
Consider 𝑣𝑣 = (𝑎𝑎, 0), then 𝑣𝑣 is adjacent to the 
vertices in 𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆6, 𝑆𝑆7, 𝑆𝑆8, 𝑆𝑆9, 𝑆𝑆10 and 𝑆𝑆11. The first 
set 𝑆𝑆0 represents a trivial annihilator, while the set 𝑆𝑆1 
represent vertices with linear dependence, and the 
sets 𝑆𝑆6, 𝑆𝑆7 and 𝑆𝑆10 represent vertices with annihilator 
entries. Since |𝑆𝑆0| = 1, |𝑆𝑆1| = 𝑝𝑝 − 2 ((𝑎𝑎, 0) is not 
counted), |𝑆𝑆6| = |𝑆𝑆7| = |𝑆𝑆8| = |𝑆𝑆9| = 𝑞𝑞 − 1, 
|𝑆𝑆10| = 𝑞𝑞2 − 4𝑞𝑞 + 3, and |𝑆𝑆11| = (𝑝𝑝 − 1)(𝑞𝑞 − 1). 
Thus,  

deg(𝑣𝑣) = 1 + (𝑝𝑝 − 2) + 4(𝑞𝑞 − 1) + 
     (𝑞𝑞2 − 4𝑞𝑞 + 3) + (𝑝𝑝 − 1)(𝑞𝑞 − 1) 

 = 𝑞𝑞2 + (𝑝𝑝 − 1)𝑞𝑞 − 1. 
In a similar manner, the degree of the vertex 𝑣𝑣 =
(0, 𝑎𝑎) is 𝑞𝑞2 + (𝑝𝑝 − 1)𝑞𝑞 − 1. 
If 𝑣𝑣 = (𝑎𝑎, 𝑥𝑥), then 𝑣𝑣 is adjacent to the vertices in 𝑆𝑆0, 
vertices in 𝑆𝑆1, and to the vertices with annihilator 
entries, i.e., vertices in 𝑆𝑆7. Furthermore, vertices 
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with linear dependence, i.e., vertices in 𝑆𝑆11. Since 
|𝑆𝑆0| = 1, |𝑆𝑆1| = 𝑝𝑝 − 1, |𝑆𝑆7| = 𝑞𝑞 − 1, and |𝑆𝑆11| =
(𝑝𝑝 − 1)(𝑞𝑞 − 1) − 1 ((𝑎𝑎, 𝑥𝑥) is not counted). Thus, 
deg(𝑣𝑣) = 1 + (𝑝𝑝 − 1)(𝑞𝑞 − 1) − 1 + (𝑞𝑞 − 1) 

+(𝑝𝑝 − 1) = 𝑝𝑝𝑝𝑝 − 1. 
Likewise, the degree of the vertex (𝑥𝑥, 𝑎𝑎) is 𝑝𝑝𝑝𝑝 − 1. 
Let 𝑣𝑣 = (𝑥𝑥, 0), as usual, 𝑣𝑣 is adjacent to 𝑆𝑆0. Since 
𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝) = 𝑀𝑀𝑞𝑞, then 𝑣𝑣 is adjacent to vertices with 
annihilator entries, i.e., 𝑣𝑣 is adjacent to vertices in 
𝑆𝑆3, 𝑆𝑆4, and 𝑆𝑆5. Moreover, it is adjacent to vertices 
with mixed entries, such as vertices in 𝑆𝑆12. Also, 𝑣𝑣 is 
adjacent to its linearly dependent vertices, i.e., 
vertices in 𝑆𝑆6. Furthermore, 𝑣𝑣 is adjacent to the 
vertices in the sets 𝑆𝑆1 and 𝑆𝑆2. Since |𝑆𝑆0| = 1, |𝑆𝑆1| =
|𝑆𝑆2| = |𝑆𝑆3| = |𝑆𝑆4| = 𝑝𝑝 − 1, |𝑆𝑆5| = 𝑝𝑝2 − 4𝑝𝑝 + 3, 
|𝑆𝑆6| = 𝑞𝑞 − 2 ((𝑥𝑥, 0) is not counted), |𝑆𝑆12| = (𝑝𝑝 −
1)(𝑞𝑞 − 1). Thus, 
deg(𝑣𝑣) = 1 + 4(𝑝𝑝 − 1) + 𝑝𝑝2 − 4𝑝𝑝 + 3 + (𝑞𝑞 − 2)

+ (𝑝𝑝 − 1)(𝑞𝑞 − 1)
= 𝑝𝑝2 + (𝑞𝑞 − 1)𝑝𝑝 − 1 

Similarly, the degree of the vertex (0, 𝑥𝑥) is 𝑝𝑝2 +
(𝑞𝑞 − 1)𝑝𝑝 − 1. 
Let 𝑣𝑣 = (𝑎𝑎, 𝑏𝑏) for any non-zeros 𝑎𝑎, 𝑏𝑏 ∈ 𝑀𝑀𝑞𝑞

∗. It is 
clear that (𝑎𝑎, 𝑏𝑏) is adjacent 𝑆𝑆0 and adjacent to the 
vertices in 𝑆𝑆8, 𝑆𝑆9 and 𝑆𝑆10. The vertex 𝑣𝑣 is adjacent to 
all linearly dependent vertices, i.e., vertices of the 
form (𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚), and they are p − 2 vertices. Also, 𝑣𝑣 
is adjacent to the vertices in the sets 𝑆𝑆6 and 𝑆𝑆7. 
Typically, since |𝑆𝑆0| = 1, |𝑆𝑆3| = |𝑆𝑆4| = 𝑝𝑝 − 2 
((𝑎𝑎, b) is not counted), |𝑆𝑆6| = |𝑆𝑆7| = |𝑆𝑆8| = |𝑆𝑆9| =
𝑞𝑞 − 1, and |𝑆𝑆10| = 𝑞𝑞2 − 4𝑞𝑞 + 3. Thus, the total 
degree of 𝑣𝑣 is 

deg(𝑣𝑣) = 1 + (𝑝𝑝 − 1) + 4(𝑞𝑞 − 1) + 𝑞𝑞2 − 4𝑞𝑞 +
3 = 𝑞𝑞2 + 𝑝𝑝 − 2.  

Finally, if 𝑣𝑣 = (𝑥𝑥,𝑦𝑦) for any non-zeros 𝑥𝑥, 𝑦𝑦 ∈ 𝑀𝑀𝑝𝑝
∗. It 

is obvious that (𝑥𝑥,𝑦𝑦) is adjacent to 𝑆𝑆0  and adjacent 
to the vertices in the sets 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4 and 𝑆𝑆5. Also, 
it is adjacent to linear dependence vertices (𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚) 
for some 1 ≤ 𝑚𝑚 ≤ 𝑞𝑞 − 1. Since |𝑆𝑆0| = 1, |𝑆𝑆1| =
|𝑆𝑆2| = |𝑆𝑆3| = |𝑆𝑆4| = 𝑝𝑝 − 1, |𝑆𝑆5| = 𝑝𝑝2 − 4𝑝𝑝 + 3 
and there are 𝑞𝑞 − 2 multiples of 𝑣𝑣. Thus, the total 
degree of 𝑣𝑣 is:  

deg(𝑣𝑣) = 1 + 4(𝑝𝑝 − 1) + (𝑝𝑝2 − 4𝑝𝑝 + 3) +
(𝑞𝑞 − 2) = 𝑝𝑝2 + 𝑞𝑞 − 2. 

Remark 3.4.  
i. The degrees reflect the number of solutions to 

𝑥𝑥𝑥𝑥 ≡ 𝑎𝑎𝑎𝑎 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝), tied to the Chinese 
Remainder Theorem.   

ii. The structure generalizes to arbitrary 𝑛𝑛 via prime 
factorization, with degrees computable 
multiplicatively.   

iii. There is a spanning tree with exactly �𝜙𝜙(𝑛𝑛)�2 −

1 edges and �𝜙𝜙(𝑛𝑛)�2 vertices, which 
corresponds to:  {(0, 0), (𝑎𝑎1, 𝑏𝑏1)} ∪
{(0, 0), (𝑎𝑎2, 𝑏𝑏2)}  ∪ …∪ {(0, 0), (𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘)}, where 

𝑘𝑘 = �𝑛𝑛 − 𝜙𝜙(𝑛𝑛)�2 − 1.   
iv. The graph Γ𝑝𝑝𝑝𝑝 is not regular, where vertex 

degrees vary based on the linear dependence of 
their structure.   

Corollary 3.7. The edge connectivity of Γ𝑝𝑝𝑝𝑝 is 
𝜅𝜅′�Γ𝑝𝑝𝑝𝑝� = 𝑝𝑝𝑝𝑝 − 1. 

Proposition 3.11. The cut vertex set of Γ𝑝𝑝𝑝𝑝 is the 
ideal-generated subgraph:   
𝑉𝑉𝑐𝑐 =  𝑀𝑀𝑝𝑝 × 𝑀𝑀𝑝𝑝 =  {(𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙): 𝑘𝑘, 𝑙𝑙 ∈  {0,1, … , 𝑞𝑞 − 1}, 
where 𝑀𝑀𝑝𝑝 = 〈 𝑝𝑝 〉 ⊂ ℤ𝑝𝑝𝑝𝑝. 
Proof: By definition, 𝑀𝑀𝑝𝑝 × 𝑀𝑀𝑝𝑝 includes all pairs 
where both coordinates are multiples of 𝑝𝑝 (zero 
divisors modulo 𝑞𝑞).  From Proposition 3.10, the 
vertices in 𝑉𝑉𝑐𝑐 have degree 𝑝𝑝2 + (𝑞𝑞 − 1)𝑝𝑝 − 1 or 
higher. 
The subgraph 𝑀𝑀𝑞𝑞 × 𝑀𝑀𝑞𝑞 , where both coordinates are 
multiples of 𝑞𝑞, becomes disconnected.   For (𝑎𝑎, 𝑏𝑏), 
(𝑥𝑥,𝑦𝑦) ∈  𝑀𝑀𝑞𝑞 ×  𝑀𝑀𝑞𝑞, the adjacency condition implies 
that 𝑞𝑞2 divides (𝑎𝑎𝑎𝑎 −  𝑏𝑏𝑏𝑏), which only holds if 
(𝑎𝑎, 𝑏𝑏) = 𝑘𝑘(𝑥𝑥,𝑦𝑦). Without 𝑉𝑉𝑐𝑐, there are no paths 
between different proportional pairs.  Pairs like 
(𝑎𝑎, 𝑥𝑥) with 𝑎𝑎 ∈ 𝑀𝑀𝑞𝑞, 𝑥𝑥 ∈ 𝑀𝑀𝑝𝑝 lose all connections to 
𝑀𝑀𝑞𝑞 × 𝑀𝑀𝑞𝑞 when 𝑉𝑉𝑐𝑐 is removed, because 𝑉𝑉𝑐𝑐 previously 
bridged them via (0,0) and (0, 𝑥𝑥). 
Observe that no proper subset of 𝑉𝑉𝑐𝑐 suffices keeping 
(0,0) preserves some paths, but 𝑀𝑀𝑝𝑝 × 𝑀𝑀𝑝𝑝\{(0,0)} 
still disconnects 𝑀𝑀𝑞𝑞 × 𝑀𝑀𝑞𝑞  due to the constraints of 
the Chinese Remainder Theorem.  Smaller sets fail 
to separate all 𝑞𝑞 − 1 equivalence classes in 𝑀𝑀𝑞𝑞 ×
𝑀𝑀𝑞𝑞.  
Corollary 3.8. The vertex connectivity of the graph 
Γ𝑝𝑝𝑝𝑝 is 𝛼𝛼�Γ𝑝𝑝𝑝𝑝� = 𝑝𝑝2, achieved by the minimal cut set 
𝑉𝑉𝑐𝑐 = 𝑀𝑀𝑝𝑝 × 𝑀𝑀𝑝𝑝. 
Example 3.3. For 𝑛𝑛 = 15, where 𝑞𝑞 = 3, 𝑝𝑝 = 5:   

𝑉𝑉𝑐𝑐 = 𝑀𝑀5 × 𝑀𝑀5 = {(0,0), (5,0), (10,0), (0,5),  
(0,10), (5,5), (10,10), (10,5), (5,10)}.   

Removing 𝑉𝑉𝑐𝑐 leaves 4 isolated cliques from 
𝑀𝑀3 × 𝑀𝑀3 = {(3,0), … , (14,14)} since (0,0) ∈ 𝑉𝑉𝑐𝑐 
has already been removed. There are also two 
larger cliques with mixed coordinates. See Figure 
3. 
Proposition 3.12. The graph Γ𝑝𝑝𝑝𝑝 contains two 
distinct types of maximum cliques, based on the 
graph definition on  𝔻𝔻𝑛𝑛 × 𝔻𝔻𝑛𝑛: 
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Left clique  
𝒞𝒞𝑙𝑙 = �(𝑘𝑘 𝑝𝑝, 𝑎𝑎): 0 ≤ 𝑘𝑘 ≤ 𝑞𝑞 − 1, 𝑎𝑎 ∈ 𝑀𝑀𝑞𝑞�. 

Right clique  
𝒞𝒞𝑅𝑅 = �(𝑎𝑎, 𝑘𝑘 𝑝𝑝): 0 ≤ 𝑘𝑘 ≤ 𝑞𝑞 − 1, 𝑎𝑎 ∈ 𝑀𝑀𝑞𝑞�. 

Proof: For any two vertices (𝑘𝑘1 𝑝𝑝, 𝑎𝑎1), (𝑘𝑘2 𝑝𝑝, 𝑎𝑎2) ∈
𝒞𝒞𝑙𝑙, their adjacency condition is: 

(𝑘𝑘1 𝑝𝑝) (𝑎𝑎2) − (𝑎𝑎1)(𝑘𝑘2 𝑝𝑝) ≡ 𝑝𝑝(𝑘𝑘1 𝑎𝑎2 − 𝑘𝑘2 𝑎𝑎1), 
as 𝑘𝑘1 𝑎𝑎2 − 𝑘𝑘2 𝑎𝑎1 ∈ 𝑀𝑀𝑞𝑞, then  𝑝𝑝(𝑘𝑘1 𝑎𝑎2 − 𝑘𝑘2 𝑎𝑎1) ≡
0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝), which implies 𝑘𝑘1 𝑎𝑎2 − 𝑘𝑘2 𝑎𝑎1 ≡
0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞). 

 Moreover, this is the maximum clique (no proper 
superset is a clique) because extending any external 
vertex (𝑥𝑥,𝑦𝑦) with 𝑦𝑦 ≢  0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞) and 𝑦𝑦 ∈ 𝑀𝑀𝑝𝑝 to 𝒞𝒞𝑙𝑙 
breaks adjacency for some pairs, where (𝑘𝑘 𝑝𝑝) 𝑦𝑦 ≢
0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝). Similarly, 𝒞𝒞𝑅𝑅 is a right maximum 
clique.  
Remark 3.5.  

i. The intersection of any left and right clique is 
exactly {(0,0)}. 

ii. There are more smaller cliques, such as  
�(0, 0), (0, 𝑎𝑎1), (0, 𝑎𝑎2), … , �0, 𝑎𝑎𝑝𝑝−1�� and 
{(0, 0), (𝑥𝑥1, 0), (𝑥𝑥2, 0), … , (𝑥𝑥𝑞𝑞−1, 0)}, where 
𝑚𝑚 = 𝑝𝑝𝑝𝑝 − 𝜙𝜙(𝑝𝑝𝑝𝑝) + 1 = 𝑝𝑝 + 𝑞𝑞.  

iii. If the vertex cut set is removed from Γ𝑝𝑝𝑝𝑝, the 
resulting graph decomposes into a union of 
complete subgraphs (cliques) corresponding to 

equivalence classes of linearly dependent and 
annihilator coordinator vectors over 𝔻𝔻𝑛𝑛 × 𝔻𝔻𝑛𝑛. 

In the graph Γ15 Figure 4 illustrates the maximum 
left clique including smaller left cliques. 
Corollary 3.9. In the graph Γ𝑝𝑝𝑝𝑝, the clique number 
𝜔𝜔�Γ𝑝𝑝𝑝𝑝� = 𝑝𝑝𝑝𝑝 
Proposition 3.13. Let 𝑛𝑛 = 𝑝𝑝𝑝𝑝 for distinct odd 
primes 𝑝𝑝, 𝑞𝑞. The set   
𝐼𝐼𝑎𝑎 = �(𝑎𝑎,𝑚𝑚 𝑎𝑎):𝑚𝑚 = 0, 1, 2, … , 𝑝𝑝 − 1, 𝑎𝑎 ∈ 𝑀𝑀𝑞𝑞

∗� ∪
{(𝑥𝑥, 𝑏𝑏)}, 

where 𝑥𝑥 ∈ 𝑀𝑀𝑝𝑝 and 𝑏𝑏 ∈ 𝑀𝑀𝑞𝑞
∗, is a maximum 

independent set in Γ𝑝𝑝𝑝𝑝 with 𝛼𝛼�Γ𝑝𝑝𝑝𝑝� = 𝑝𝑝 + 1. 
Proof: Let 𝑣𝑣1 = (𝑎𝑎,𝑚𝑚1𝑎𝑎) and 𝑣𝑣2 = (𝑎𝑎,𝑚𝑚2𝑎𝑎) be any 
two vertices in 𝐼𝐼𝑎𝑎. Based on the adjacency condition, 
then 𝑎𝑎(𝑚𝑚2 𝑎𝑎) − (𝑚𝑚1 𝑎𝑎)𝑎𝑎 ≡ 𝑎𝑎2(𝑚𝑚2 − 𝑚𝑚1). Since 
𝑚𝑚2 −𝑚𝑚1 ≠ 0 and 𝑎𝑎2 ≢ 0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝). Thus, the 
condition fails. If 𝑣𝑣2 = (𝑥𝑥, 𝑏𝑏) then 𝑎𝑎𝑎𝑎 − (𝑚𝑚1 𝑎𝑎)𝑥𝑥 ≡
𝑎𝑎𝑎𝑎 ≢ 0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛), which means 𝐼𝐼𝑎𝑎 is an independent 
vertex set.   
To prove the maximality, suppose we add any other 
vertex (𝑥𝑥,𝑦𝑦) ∈ 𝔻𝔻𝑛𝑛 × 𝔻𝔻𝑛𝑛 to 𝐼𝐼𝑎𝑎. Then, If 𝑥𝑥 ∈ 𝑀𝑀𝑞𝑞, 
then (𝑥𝑥,𝑦𝑦) is adjacent to (𝑎𝑎, 0) ∈ 𝐼𝐼𝑎𝑎 (since 𝑥𝑥 ⋅  0 −
 𝑎𝑎 ⋅  𝑦𝑦 ≡ 0  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝) if and only if 𝑦𝑦 ≡
0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), but 𝑦𝑦 must be a multiple of 𝑎𝑎 to avoid 
adjacency with (𝑎𝑎, 0), leading to (𝑥𝑥,𝑦𝑦) ∈ 𝐼𝐼𝑎𝑎. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: The graph Γ15 without vertex cut set 𝑉𝑉𝑐𝑐 
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On the other side, if 𝑥𝑥 ∈ 𝑀𝑀𝑝𝑝, then (𝑥𝑥, 𝑦𝑦) is adjacent 
to (𝛽𝛽, 𝑏𝑏) ∈ 𝐼𝐼𝑎𝑎 for some 𝛽𝛽 ∈ 𝑀𝑀𝑝𝑝 (since 𝑥𝑥 𝑏𝑏 − 𝛽𝛽 𝑦𝑦 ≡
0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝) if and only if 𝑦𝑦 ≡  0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞), but 𝑦𝑦 
must be a multiple of 𝑝𝑝 to avoid adjacency with 
(𝛽𝛽, 𝑏𝑏), leading to (𝑥𝑥, 𝑦𝑦) is adjacent to (𝑎𝑎,𝑚𝑚 𝑎𝑎). 
Therefore, the set 𝐼𝐼𝑎𝑎 cannot be extended with a 
vertex (𝑥𝑥,𝑦𝑦) ∈ 𝑀𝑀𝑝𝑝

∗ × 𝑀𝑀𝑝𝑝
∗ without violating 

independence. Hence 𝐼𝐼𝑎𝑎 is a maximum 
independent set in Γ𝑝𝑝𝑝𝑝. 
To compute the 𝛼𝛼�Γ𝑝𝑝𝑝𝑝�, the subset {(𝑞𝑞,𝑚𝑚𝑚𝑚): 0 ≤
𝑚𝑚 ≤ 𝑝𝑝 − 1} contains exactly 𝑝𝑝 distinct vertices.  
Adding (𝛼𝛼, 𝑎𝑎), which is distinct from all vertices in 
𝐼𝐼𝑎𝑎 gives 𝑝𝑝 + 1 total vertices.   
Proposition 3.14. For odd primes 𝑝𝑝 and 𝑞𝑞  with 𝑝𝑝 >
𝑞𝑞 if the vertex connectivity 𝜅𝜅�Γ𝑝𝑝𝑝𝑝� ≥ 𝑝𝑝 + 1, then the 
graph Γ𝑝𝑝𝑝𝑝 is Hamiltonian. 
Proof: To determine the Hamiltonicity of Γ𝑝𝑝𝑝𝑝, we 
combine our analysis of the graph's partition into sets 
𝑆𝑆0 through 𝑆𝑆12 (Section 3.2) with the classical 
sufficient condition of Chvátal and Erdős (Theorem 
2.2). This condition states that a graph is 
Hamiltonian if its vertex connectivity 𝜅𝜅(𝐺𝐺) is at least 
its independence number 𝛼𝛼(𝐺𝐺). From Proposition 
3.13, we know that 𝛼𝛼(Γ𝑝𝑝𝑝𝑝) = 𝑝𝑝 + 1, and according 

to this proposition, 𝜅𝜅�Γ𝑝𝑝𝑝𝑝� ≥  𝑝𝑝 + 1. Therefore, the 
Chvátal-Erdős condition holds as long as Γ𝑝𝑝𝑝𝑝 is 
connected, which we will confirm through explicit 
construction. 
To construct a Hamiltonian cycle, we exploit the 
graph’s partitioned structure (section 3.2) and 
connectivity properties. 
The subgraph defined on the set 𝑆𝑆5 contains 𝑝𝑝 − 3 
components (cliques), while the set 𝑆𝑆10 contains 𝑞𝑞 −
3 components (cliques). We denote these 
components as: 
𝐴𝐴1 = �(𝑎𝑎1𝑖𝑖 , 𝑏𝑏1𝑖𝑖): 𝑎𝑎1𝑖𝑖 ,𝑏𝑏1𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 
𝐴𝐴2 = �(𝑎𝑎2𝑖𝑖 , 𝑏𝑏2𝑖𝑖): 𝑎𝑎2𝑖𝑖 , 𝑏𝑏2𝑖𝑖 ∈ 𝑀𝑀𝑞𝑞

∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1�, 
 ⋮ 
𝐴𝐴𝑞𝑞−3 = {�𝑎𝑎(𝑞𝑞−3)𝑖𝑖 , 𝑏𝑏(𝑞𝑞−3)𝑖𝑖�: 𝑎𝑎(𝑞𝑞−3)𝑖𝑖, 𝑏𝑏(𝑞𝑞−3)𝑖𝑖

∈ 𝑀𝑀𝑞𝑞
∗, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1} 

for 𝑆𝑆5, and  
𝑋𝑋1 = {(𝑥𝑥1𝑖𝑖 , 𝑦𝑦1𝑖𝑖): 𝑥𝑥1𝑖𝑖 , 𝑦𝑦1𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝

∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1} 
𝑋𝑋2 = {(𝑥𝑥2𝑖𝑖 , 𝑦𝑦2𝑖𝑖): 𝑥𝑥2𝑖𝑖 , 𝑦𝑦2𝑖𝑖 ∈ 𝑀𝑀𝑝𝑝

∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1}, 
  ⋮ 
𝑋𝑋𝑞𝑞−3 = ��𝑥𝑥(𝑞𝑞−3)𝑖𝑖, 𝑦𝑦(𝑞𝑞−3)𝑖𝑖�: 𝑥𝑥(𝑞𝑞−3)𝑖𝑖 , 𝑦𝑦(𝑞𝑞−3)𝑖𝑖

∈ 𝑀𝑀𝑝𝑝
∗ , 1 ≤ 𝑖𝑖 ≤ 𝑞𝑞 − 1�, 

for 𝑆𝑆10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: The maximum left clique in Γ15 
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Each is constructed to preserve specific algebraic 
relationships. These subsets form complete 
subgraphs, ensuring the existence of Hamiltonian 
paths within them. 
Key subsets include 𝑆𝑆5 and 𝑆𝑆10, which decompose 
into smaller complete subgraphs 𝐴𝐴1, … ,𝐴𝐴𝑝𝑝−3 and 
𝑋𝑋1, … ,𝑋𝑋𝑞𝑞−3, respectively. Each of these components 
supports a Hamiltonian path, denoted 𝑃𝑃𝐴𝐴𝑖𝑖  and 𝑃𝑃𝑋𝑋𝑖𝑖. 
The proof proceeds by systematically connecting 
these paths: 𝑃𝑃𝑆𝑆4  links to 𝑃𝑃𝑆𝑆7 , which then connects to 
𝑃𝑃𝑆𝑆11 , and this chain continues through 𝑃𝑃𝑆𝑆1 ,(0,0), 𝑃𝑃𝑆𝑆2 , 
𝑃𝑃𝑆𝑆12  and 𝑃𝑃𝑆𝑆6  ensuring all vertices are traversed 
without repetition. 

To connect more paths, 𝑃𝑃𝑆𝑆6  must be connected to a 
path 𝑃𝑃𝐴𝐴𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 3, then a path 𝑃𝑃𝑋𝑋𝑗𝑗  for 1 ≤
𝑗𝑗 ≤ 𝑞𝑞 − 3. Since 𝑝𝑝 − 3 is greater than 𝑞𝑞 − 3, we 
supplement more vertices excluded from 𝑃𝑃𝑆𝑆6 , 𝑃𝑃𝑆𝑆7 , 
𝑃𝑃𝑆𝑆8  and 𝑃𝑃𝑆𝑆9 , ensuring that all of them are minimized 
to smaller paths up to at least one vertex remains to 
preserve connectivity between Hamiltonian paths. 
This supplement allows us to connect the rest of the 

paths 𝑃𝑃𝐴𝐴𝑖𝑖, and this creation of paths ends with a path 
𝑃𝑃𝐴𝐴𝑖𝑖, which can be connected to the path 𝑃𝑃𝑆𝑆8 , 𝑃𝑃𝑆𝑆3  then 
𝑃𝑃𝑆𝑆9 . This flexibility guarantees that the construction 
remains valid even when 𝑃𝑃𝑆𝑆9    and 𝑃𝑃𝑆𝑆10  lack enough 
connectors. 
The final connection loops back 𝑃𝑃𝑆𝑆9  to 𝑃𝑃𝑆𝑆4 , 
completing the Hamiltonian cycle.  However, if we 
subtract three vertices from the cut vertex set, which 
are �(0,0), �0, 𝑥𝑥𝑗𝑗�, �𝑥𝑥𝑗𝑗 , 0��, we get the number of 
vertices required to connect the paths 𝐴𝐴𝑖𝑖, 𝑃𝑃𝑆𝑆3  and   
𝜅𝜅�Γ𝑝𝑝𝑝𝑝� − 3 = 𝑞𝑞2 − 3 ≥ 𝑝𝑝 − 2. Therefore, the graph 
𝐺𝐺𝑝𝑝𝑝𝑝 admits a Hamiltonian cycle if  𝜅𝜅�Γ𝑝𝑝𝑝𝑝� ≥ 𝑝𝑝 + 1. 
 

Example 3.4. Consider 𝑛𝑛 = 5 × 3, then 𝜅𝜅(Γ15) = 9, 
and 𝑝𝑝 + 1 = 6. It is Hamiltonian. See Figure 5. 
However, if 𝑛𝑛 = 11 × 3, then 𝜅𝜅(Γ33) = 9, and 𝑝𝑝 +
1 = 12. So, Γ33 isn’t Hamiltonian, because the 
Hamilton paths such as 𝑃𝑃𝑆𝑆4  and 𝑃𝑃𝐴𝐴8  are not adjacent.  
Based on the sufficient condition for an undirected 
graph to be supereulerian, provided by Theorem 2.3, 
we have the following: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: For 𝑝𝑝 = 5 and 𝑞𝑞 = 3, shown is the Hamiltonian cycle of the graph Γ15 
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Corollary 3.10. If 𝜅𝜅�Γ𝑝𝑝𝑝𝑝� ≥ 𝑝𝑝 + 1. Then Γ𝑝𝑝𝑝𝑝 is 
supereulerian. 

Proof: A graph is supereulerian if it contains a 
spanning closed trail. By Proposition 3.14, Γ𝑝𝑝𝑝𝑝 with 
𝜅𝜅�Γ𝑝𝑝𝑝𝑝� ≥ 𝑝𝑝 + 1 is Hamiltonian, then it has a 
Hamiltonian cycle 𝐶𝐶𝐻𝐻 that visits every vertex exactly 
once. Since 𝐶𝐶𝐻𝐻 is a closed trail spanning all vertices, 
Γ𝑝𝑝𝑝𝑝 is trivially supereulerian. 

Remark 3.6.  The converse is false; supereulerian 
graphs need not be Hamiltonian (e.g., the union of 
two cycles sharing one vertex is supereulerian but 
not Hamiltonian). 
Corollary 3.11. For odd primes 𝑝𝑝 and 𝑞𝑞  with 𝑝𝑝 =
𝑞𝑞 + 2, the graph Γ𝑝𝑝𝑝𝑝 is Hamiltonian. 
Proof: All vertices in the following Hamiltonian 
path are included exactly once, as each subset's 

Hamiltonian sub-path covers its vertices, and the 
linking process preserves this property.  Thus, the 
constructed cycle is Hamiltonian.   

�𝑃𝑃𝐴𝐴1 , (𝑥𝑥1, 𝑥𝑥1)� ∪ �𝑃𝑃𝐴𝐴2 , (𝑥𝑥2, 𝑥𝑥2)� ∪ …
∪ {𝑃𝑃𝐴𝐴𝑞𝑞−1 , �𝑥𝑥𝑞𝑞−1, 𝑥𝑥𝑞𝑞−1�} ∪ 

�(𝑎𝑎1, 𝑎𝑎1),𝑃𝑃𝑋𝑋1� ∪ �(𝑎𝑎2, 𝑎𝑎2),𝑃𝑃𝑋𝑋2� ∪ …
∪ {(𝑎𝑎q−3 𝑎𝑎𝑞𝑞−3),𝑃𝑃𝑋𝑋𝑞𝑞−3} ∪ 

��𝑎𝑎𝑞𝑞−2, 𝑎𝑎𝑞𝑞−2�, �𝑎𝑎𝑞𝑞−1, 𝑎𝑎𝑞𝑞−1�, �𝑎𝑎𝑞𝑞 , 𝑎𝑎𝑞𝑞�, �𝑎𝑎𝑞𝑞+1, 𝑎𝑎𝑞𝑞+1��
∪ 

𝑃𝑃𝑆𝑆9 ∪ 𝑃𝑃𝑆𝑆4 ∪ 𝑃𝑃𝑆𝑆7 ∪ 𝑃𝑃𝑆𝑆11 ∪ {𝑃𝑃𝑆𝑆1 , (0,0)} ∪ 𝑃𝑃𝑆𝑆2 ∪ 𝑃𝑃𝑆𝑆12 ∪
𝑃𝑃𝑆𝑆6 ∪ 𝑃𝑃𝐴𝐴1 .  

Corollary 3.12. For odd primes 𝑝𝑝 and 𝑞𝑞  with 𝑝𝑝 =
𝑞𝑞 + 2, the graph Γ𝑝𝑝𝑝𝑝 is supereulerian.   
Case 3: If 𝑛𝑛 = 𝑝𝑝2 for an odd prime 𝑝𝑝. 
When 𝑛𝑛 = 𝑝𝑝2 where 𝑝𝑝 is an odd prime. In Γ𝑝𝑝2  every 
creates the zero-divisor set: 

𝔻𝔻𝑝𝑝2 = { 𝑘𝑘𝑘𝑘: 0 ≤  𝑘𝑘 ≤  𝑝𝑝 − 1 }  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Shown is complete graph Γ25, for 𝑝𝑝 = 5. 
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The annihilator of any zero divisor 𝑘𝑘 𝑝𝑝 is the 
principal ideal < 𝑝𝑝 >. 
For any two vertices (𝑎𝑎, 𝑏𝑏) = (𝑘𝑘1𝑝𝑝, 𝑘𝑘2𝑝𝑝) and 
(𝑥𝑥,𝑦𝑦) = (𝑘𝑘3𝑝𝑝, 𝑘𝑘4𝑝𝑝) in 𝔻𝔻𝑝𝑝2 × 𝔻𝔻𝑝𝑝2, the bilinear form 
simplifies to: 

𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = (𝑘𝑘1𝑘𝑘4 − 𝑘𝑘2𝑘𝑘3)𝑝𝑝2 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2). 
This congruence holds for all 𝑘𝑘𝑖𝑖 ∈  ℤ𝑝𝑝 because 𝑝𝑝2 
always divides (𝑘𝑘1𝑘𝑘4 − 𝑘𝑘2𝑘𝑘3)𝑝𝑝2. Therefore, every 
pair of distinct vertices in Γ𝑝𝑝2 is adjacent, making Γ𝑝𝑝2 
isomorphic to the complete graph 𝐾𝐾𝑝𝑝2.  
This simplicity sharply differs from the situation 
where 𝑛𝑛 = 𝑝𝑝𝑝𝑝 with distinct primes. In that case, non-
adjacent pairs appear. For instance, (𝑝𝑝, 0) and (0, 𝑝𝑝) 
are not adjacent.on-unit element of ℤ𝑝𝑝2 is a multiple 
of 𝑝𝑝, which  
Proposition 3.15. For any odd prime number 𝑝𝑝, the 
graph Γ𝑝𝑝2  is complete 
Proof: Completeness follows from the universal 
vanishing of bilinear congruence, while uniqueness 
holds because for 𝑛𝑛 = 𝑝𝑝𝑝𝑝 (distinct primes), the 
condition 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏𝑏𝑏  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝) fails for pairs like 
(𝑝𝑝, 0) and (0, 𝑞𝑞).   
The complete structure of Γ𝑝𝑝2  from Proposition 3.15 
is shown in Figure 6. This figure illustrates Γ𝑝𝑝2  for 
𝑝𝑝 = 5. All possible edges are included, confirming 
the universal adjacency of zero-divisor pairs (𝑘𝑘𝑘𝑘, 𝑙𝑙𝑙𝑙) 
in ℤ𝑝𝑝2 × ℤ𝑝𝑝2.   
When 𝑛𝑛 = 𝑝𝑝2, zero-divisor dominance leads the 
graph Γ𝑝𝑝2  to become a single maximal clique. Thus, 
𝜔𝜔�Γ𝑝𝑝2� = 𝑝𝑝2. 
Remark 3.7. 
i. Unlike composite 𝑛𝑛 = 𝑝𝑝𝑝𝑝, zero-divisors in ℤ𝑝𝑝2 

have identical annihilators 〈 𝑝𝑝 〉, making all pairs 
adjacent.   

ii. While H𝑝𝑝2 decomposes due to multiplicative 
structure, Γ𝑝𝑝2  collapses into a single clique from 
additive uniformity.  

iii. The diameter of the graph Γ𝑝𝑝2  is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Γ𝑝𝑝2� = 1 
as Γ𝑝𝑝2  is complete, and the girth is 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ�Γ𝑝𝑝2� =
3.  

Corollary 3.13. The graph is Hamiltonian and 
supereulerian. 
Our study of 𝐺𝐺𝑛𝑛 in these cases leads to a shared 
understanding: the prime factorization of 𝑛𝑛 
determines the overall structure of the graph. We 
summarize these findings below and explore their 
larger implications. 

4. Conclusion 
In this work, we have studied the graph 𝐺𝐺𝑛𝑛 defined 
on ℤ𝑛𝑛 × ℤ𝑛𝑛 using the adjacency condition 𝑎𝑎𝑎𝑎 ≡
 𝑏𝑏𝑏𝑏 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛). By breaking down 𝐺𝐺𝑛𝑛 into unit and 
zero-divisor subgraphs, we uncovered a clear 
contrast. The unit subgraph Η𝑛𝑛 consists of separate 
cliques determined by Euler’s totient function 
𝜙𝜙(𝑛𝑛). In contrast, the zero-divisor subgraph Γ𝑧𝑧 
shows the complex interactions of annihilation 
ideals and prime factorization. Our study of the 
cases 𝑛𝑛 = 𝑝𝑝2, 𝑛𝑛 = 2𝑝𝑝, and 𝑛𝑛 = 𝑝𝑝𝑝𝑝 showed how 
the algebraic structure of ℤ𝑛𝑛 directly influences the 
graph’s shape. This ranges from the complete 
graph 𝐾𝐾𝑝𝑝2 for 𝑛𝑛 = 𝑝𝑝2 to the Hamiltonian and 
supereulerian properties appearing under certain 
connectivity conditions for 𝑛𝑛 = 𝑝𝑝𝑝𝑝. 

List of symbols 

Symbol Description 
ℬ The bilinear form function  
ℤ𝑛𝑛 The ring of integers modulo 𝑛𝑛 
𝕌𝕌𝑛𝑛 The group of units in ℤ𝑛𝑛 
𝔻𝔻𝑛𝑛 The set of zero divisors (including zero) 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎) The annihilator of 𝑎𝑎 
𝜙𝜙(𝑛𝑛) Euler’s totient function  
𝑀𝑀2 The finite set of multiples of 2 
𝑀𝑀𝑝𝑝 The finite set of multiples of 𝑝𝑝 
𝑀𝑀𝑝𝑝

∗  The finite set of multiples of 𝑝𝑝 without 
zero 

#(𝐴𝐴) The cardinality of the set 𝐴𝐴. 
𝑆𝑆𝑖𝑖  A partition set of 𝔻𝔻𝑛𝑛 × 𝔻𝔻𝑛𝑛 for 0 ≤ 𝑖𝑖 ≤ 12 
𝐴𝐴𝑖𝑖 A partition set of 𝑆𝑆5 for 𝑛𝑛 = 𝑝𝑝𝑝𝑝. 
𝑋𝑋𝑖𝑖  A partition set of 𝑆𝑆10 for 𝑛𝑛 = 𝑝𝑝𝑝𝑝. 
𝐺𝐺𝑛𝑛 The whole graph is defined on the ring 

ℤ𝑛𝑛 × ℤ𝑛𝑛 by the bilinear form ℬ  
Η𝑛𝑛 The subgraph defined on 𝕌𝕌𝑛𝑛 × 𝕌𝕌𝑛𝑛  
Γ𝑛𝑛 The subgraph defined on 𝔻𝔻𝑛𝑛 × 𝔻𝔻𝑛𝑛 
𝐾𝐾𝑛𝑛 Complete graph with 𝑛𝑛 vertices 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐺𝐺) The diameter of a graph 𝐺𝐺  
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ(𝐺𝐺) The girth of a graph 𝐺𝐺  
𝜔𝜔(𝐺𝐺) The clique number of a graph 𝐺𝐺 

deg (𝑣𝑣) Degree of a vertex 𝑣𝑣  
𝜅𝜅(Γ𝑛𝑛) Vertex Connectivity of a graph Γ𝑛𝑛 
𝐼𝐼𝑣𝑣 Independent vertex set 
𝒞𝒞𝐿𝐿 The left clique  
𝒞𝒞𝑅𝑅 The right clique 

(𝑎𝑎, 𝑏𝑏)~(𝑥𝑥,𝑦𝑦) Shows the adjacency between the vertices 
(𝑎𝑎, 𝑏𝑏), (𝑥𝑥, 𝑦𝑦) 

𝜅𝜅′(Γ𝑛𝑛) Edge connectivity 
𝑃𝑃𝑆𝑆𝑖𝑖 A Hamilton path of the components 𝑆𝑆𝑖𝑖  
𝑃𝑃𝐴𝐴𝑖𝑖 A Hamilton path of the components 𝐴𝐴𝑖𝑖 
𝑃𝑃𝑋𝑋𝑖𝑖 A Hamilton path of the components 𝑋𝑋𝑖𝑖  
𝛼𝛼(Γ𝑛𝑛) The size of a maximal independent set in 

Γ𝑛𝑛 
𝛿𝛿(𝐺𝐺) The Minimum degree of a graph 𝐺𝐺. 
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