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ABSTRACT

We investigate the structural properties of a graph defined on the ring Z,, X Z,,. The Adjacency between two different
vertices (a, b) and (x, y) is determined by the bilinear congruence ay = bx (mod n). We analyze three fundamental
cases, n = p2,2p and pq for distinct odd primes p, q. We describe the graph's breakdown into unit and non-unit
vertex subsets. The unit subgraph forms disjoint cliques, with sizes depending on Euler's totient function. In contrast,
the zero-divisor subgraph shows more complex behaviour governed by annihilation ideals. We establish general
properties, including degree formulas, determination of maximum clique sizes in each component, determining the
diameter, computing the girth, locating the graph centers, and finding the measures of vertex and edge connectivity.
Additionally, we characterize independent sets and prove the existence of Hamiltonian cycles and supereulerian
properties under certain connectivity conditions. Our results show how the prime factorization of n influences these
properties.

Keywords: Bilinear Form, Zero-Divisor Graph, Modular Arithmetic, Hamiltonian Cycle, Maximum Clique,
Supereulerian Graph.

n oubiay daaal) Jac ) Alla e el U gaUail) ddac) gy 48 jaall 4aibual) & gas plt Apilind) Gailadl)

b jinl) iaa® Cigelos jan

LJ?E"/“?:VL;J/“?:’}L‘.'//‘L""L:’ :ﬁ}.ﬁt.//w‘;/ﬁyéé).//,o.«dq

L] g il g il drals cLepsil) 48l Lo Sl an®

oasl

Gl I e (X, 1) 5(a, b) onalizes cnaly o Ly apams @y oy X Ly Aalnd) e ad il g 2Ll pasbiasedl s
Ciiai P, q Aalixe 43,8 Al sl N =P pq, 2p 2y uslal cYl I Llxny a5ai . ay = bx (mod n) Jasxdl Sl
detad plesl @3 Aiadie (cliques) Slaazs Slasgl Gizell @ dl Sy Bug se9 iy (9l Slegama ] Giled! syl alus)
Ay Jodd &ale aibias et cladl S pasy lgdad AST Kol yaiall eulsal il euayd) sedad (lall @ Lol Al e
ol slzmly eyl 58150 dyuizmiy oyl olie ol g eyl Gl Jlad dpuzes (58 IS (§ Slaezes elael aleal dyazmsy ¢ u99,ll
boyd cxs 2\.9.\._.3;}” 4a5lag dggilola lygs s9mg cuiiy Uatwd! Slegazll Caiogn pods «eldy g 8Ll . blgmdly w93l JLas]
- omsbasdlsda e T aaall Jo¥1 Julall (35, caiS Limilas ydad Aiae Jlas!

bl 33 il ey cpazms ST Agiliala By90 ¢ Jaaddl olund |« yiall gl il Gled) oyl udas 4618 Lo i Ladl/ iLalSH

1. Introduction These graphs capture valuable information about
The study of graphs based on algebraic structures ring  properties, including ideal  structure,
has provided deep insight into the connection annihilators, and zero-divisor behavior. A related
between algebra and graph theory. Among the most model is the dot product graph [2], which is defined
important types are zero-divisor graphs [1], where on ZX with adjacency determined by orthogonal
vertices represent elements of a commutative ring, vectors under the dot product modulo n. Such graphs
and edges connect pairs whose product is zero. have applications in linear algebra over finite rings
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and combinatorial design theory. A third type arises
from symplectic graphs [3], which are formed from
alternating bilinear forms over finite fields and show
high symmetry, with applications in geometry and
coding theory.

In this paper, we introduce a new graph, denoted as
G,, defined on Z,, x Z,, where two distinct vertices
(a,b) and (x,y) are adjacent if and only if ay =
bx (mod n). This adjacency condition generalizes
the determinant criterion for linear dependence in
Z, XZ, as ay —bx =0 (mod n) implies (a,b)
and (x, y) are linearly dependent. It also provides a
modular version of skew-symmetric bilinear forms.
The graph combines important features of three
previous models. Like zero-divisor graphs, it shows
annihilation properties. Like dot product graphs, it
represents linear dependence. Like symplectic
graphs, it comes from a bilinear form that has
inherent orthogonality. Importantly, this graph
offers a way to examine how modular arithmetic
affects graph properties.

The algebraic distinction between units and zero
divisors in Z, naturally partitions G, into two
subgraphs: one formed by units of Z,, and another by
zero divisors. The unit subgraph H, exhibits
symmetry and regularity, decomposing into disjoint
cliques whose sizes depend on Euler’s totient
function ¢(n). On the other hand, the zero-divisor
subgraph T;, reveals more complex behavior, shaped
by the interplay of ideals and annihilators in Z,,. This
difference helps us analyze the graph’s topology
through algebraic perspectives, showing how prime
factorization affects connectivity, clique formation,
and cycles.

For n = p?, n=2p, and n = pq, where p,q are
distinct odd primes; we show that H,, decomposes to
cliques sized by ¢(n) and T;, exhibits annihilation-
driven connectivity. For each case, we derive exact
degree formulas, characterize connected
components, and determine maximal cliques. We
also compute global measures such as diameter,
girth, and vertex/edge connectivity. A key
contribution is the identification of Hamiltonian
cycles and supereulerian properties under specific
connectivity ~ conditions,  linking  algebraic
constraints (e.g., k(I3,) = a(I}) to combinatorial
phenomena. Notably, for n = p?, we show that T,
becomes a complete graph K.z, while for n = pq,
the graph’s complexity reflects the multiplicative
structure of the Chinese Remainder Theorem.

To carefully examine these graph structures, we start
by reviewing basic concepts in ring theory and graph

theory that support our study. This math and
counting tools will be crucial for grasping the
adjacency conditions and connectivity patterns in
G,.

2. Background

In this section, we recall some basic concepts in ring
theory [4-8], focusing on the ring of integers modulo
n, denoted Z,. Recall that an element a in Z,, is a
unit if ged(a,n) =1, and a zero divisor if
gcd(a,n) > 1(excluding zero). The set of units
forms a multiplicative group, denoted as U,,, while
zero divisors together with zero, denoted as D,,, has
interesting algebraic properties.

Closely related to zero divisors is the notion of an
annihilator. For an element a in a commutative ring
Z,,, the annihilator of a, denoted ann(a), is the set
of all elements r € Z,, such that r - a = 0. This set
forms an ideal of Z,, -capturing algebraic
obstructions to a’s invertibility. When a is a zero
divisor, ann(a) is non-trivial (i.e., contains non-
zero elements), while for units, ann(a) collapses to
{0}. In Z,, the structure of ann(a) is explicitly
determined by gcd(a,n). This ties directly to the
Euler phi function ¢(n), which counts the number
of units in Z,,, equivalently, the order of the group of
units U,. These algebraic properties directly
influence our graph construction, where adjacency is
determined by a bilinear form over Z,, X Z,,.
Standard graph notation and terms follow [9-12],
and any extra conventions will be clearly defined
when they are introduced. A vertex v is adjacent to
u if the edge u v exists. The neighborhood of u is
the subgraph induced by all vertices adjacent to u. A
connected graph is a graph where a path exists
between any two vertices. A spanning subgraph of
G retains all vertices but may omit edges. An acyclic
graph is a graph that contains no cycles, meaning no
path starts and ends at the same vertex while
traversing distinct edges. If such a subgraph is
acyclic and connected, it is a spanning tree. A vertex
cut is a vertex subset whose removal disconnects G,
with the smallest such set defining the vertex
connectivity k(G). Similarly, an edge cut
disconnects G when removed, and the edge
connectivity k'(G) is the minimal size of such a cut.
The Minimum degree §(G) is the smallest degree of
any vertex in the graph. Thus, removing all edges
incident to a minimum-degree vertex disconnects it,
s0 k'(G) cannot exceed 6(G). A clique is a subset of
mutually adjacent vertices represents a complete
subgraph. The clique number w(G) is the maximum
number of vertices along the complete subgraphs of
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G. The eccentricity of a vertex v in a connected
graph G is the maximum graph distance between v
and any other vertex u of G. For a disconnected
graph, all vertices are defined to have infinite
eccentricity. The diameter is the greatest distance
(maximum eccentricity) between any two vertices,
the girth is the shortest cycle length, and the graph
centre is the vertex with minimal eccentricity.
Independent sets, where no two vertices are adjacent.
A maximal independent set is an independent set that
is not a proper subset of any other independent set,
and its size is called the independence number of G
and is usually denoted by a(G). An Euler trail
traverses every edge exactly once, while a closed
version is an Eulerian circuit.

The following sufficient conditions for Hamiltonian
and supereulerian graphs will be critical for
analyzing T, in composite cases (see Propositions
3.8 and 3.12):

Theorem 2.1. [12]. A connected graph G is Eulerian
if and only if all vertices have even degree.

In contrast, a Hamilton path visits every vertex
exactly once, and a Hamilton cycle completes this
traversal into a closed cycle.

One of the most influential sufficient conditions for
Hamiltonian graphs was introduced by Chvatal and
Erdés. The following sufficient conditions will be
critical  for analyzing  Hamiltonicity  and
supereulerian properties in Section 3.

Theorem 2.2. [13]. Let G be an undirected graph. If
k(G) = a(G), then G is hamiltonian.

The following theorem, due to Bang-Jensen, and
Alessandro [14], provides a sufficient condition for
an undirected graph to be supereulerian.

Theorem 2.3. Let G be an undirected graph on at
least three vertices. If A(G) = a(G), then G is
supereulerian.

This resolves the undirected case of a broader
conjecture. It proves that such graphs always contain
a spanning closed trail. Catlin's foundational survey
[15] established key properties and sufficient
conditions for supereulerian graphs, along with
reduction techniques. His conjecture that 3-edge-
connected graphs with a(G) < 2 are supereulerian.
Catlin later proved this [16], which improved the
criteria based on connectivity. Han et al. studied a
weaker sufficient condition for supereulerian graphs.
They proved that if k(G) = a(G) — 1, then G must
be either supereulerian or part of a certain infinite
family of exceptions.

The vertex set of our graph splits into two
independent subsets based on the algebraic structure

of Z,,. Let U,, denote the group of units in Z,, and D,
the set of zero divisors (including zero). We define
the subgraph H,, with the vertex set U,, x U, which
consists of pairs where both components are units.
We also define the subgraph [, with the vertex set
D, x D, consisting of pairs where both
components are zero divisors. This partition into unit
and zero-divisor subgraphs will support the clique
decomposition of H, (Section 3.1) and the
annihilation-driven structure of I}, (Section 3.2).

In H,,, the adjacency relation shows multiplicative
properties of units, while [}, highlights annihilation
relations between zero divisors. By looking at these
subgraphs separately, we can see how the different
algebraic properties of units and zero divisors
influence their specific graph structures.

The graph in this work is created using pairs (x,y) €

Z, X Z,, where adjacency is determined by the
bilinear relation:

(a,b) ~ (x,y) ifandonlyifay = bx modn.
This condition arises naturally from a bilinear form
B:AXA - Z, where A =17, X Z, defined as:

B((a,b),(x,y)) =ay—bx.

Here, two vertices (a, b) and (x,y) are connected
precisely when the bilinear form evaluates to zero
modulo n.

The bilinear form B((a, b), (x,y)) = ay — bx is
skew-symmetric B(v,w) = —B(w, v) and linear in
each argument (see [17]). This induces symmetric
adjacency in G,,. Thus, the graph is simple.

Unlike classical zero-divisor graphs [1] or dot-
product graphs [2], it combines annihilation ay =
bx (mod n) with bilinear dependence, yielding new
symmetry properties explored in section 3.

3. Results
In this section, we organize the results into different

cases based on the factorization of n. This includes
n = p?,n = 2p, and n = pq for distinct odd primes
p and g. We describe how the graph breaks down
into unit and zero-divisor subgraphs. We also derive
precise degree formulas and explore connectivity,
clique structures, and independence number.
Important findings include identifying maximum
cliques, calculating diameter and girth, and
analyzing conditions for Hamiltonicity and
supereulerian properties.

1.1. The graph of units H,,

Case 1: If n = p is an odd prime.

When n is an odd prime, the ring Z, is a field,
meaning every non-zero element is a unit. The graph
H, on U, x U, exhibits a highly symmetric
structure due to the invertibility of its elements and
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the bilinear relation applied. The following
proposition describes its decomposition into disjoint
cliques.
Since units in Z, are closed under multiplication,
adjacency in H, reduces to scalar multiples,
inducing a clique structure
Proposition 3.1. If p is an odd prime, the graph H,,
decomposes into (p — 1) disjoint components of the
complete graph K,_,
Proof. Since Z, is a field, the adjacency condition
ay = bx (mod p) holds if and only if (a,b) and
(x,y) are scalar multiples, i.e., (x,y) = k(a, b) for
some k € U,. These partitions U, x U, into
equivalence classes where each class consists of all
non-zero scalar multiples of a fixed pair (a, b). Each
equivalence class forms a clique K,,_;, as any two
distinct vertices in the same class are adjacent. Since
there are (p — 1) distinct non-zero scaling factors in
Z,, the graph decomposes into (p —1) disjoint
cliques. Thus, H, = (p — 1K,_,. &
Corollary 3.1. For n = p, the unit subgraph H,, has
edge count:

p-1

EM) = (-1 ) (-1t
i=1

Since we have defined the unit subgraph for prime
n, we now extend our discussion to composite n =
pq. In this case, the Chinese Remainder Theorem
adds more structure, resulting in larger cliques
identified by Euler’s totient function.

Case 2: If n = p q is a composite.

When n = p q for distinct odd primes p and q, the
structure of H,, shows the properties of units in the
ring Z,,. The following proposition describes its
decomposition into larger disjoint cliques.
Proposition 3.2. If n = p q for distinct odd primes
p and q, the graph H,, decomposes into (p — 1)(q —
1) disjoint cliques of the complete graph
Kop-1-1-

Proof. By the Chinese Remainder Theorem, Z,, =
Zy X Lq. Thus, the group of units U, has order
¢(n) = (p—1(qg—1) and every unit k € U,, is
uniquely determined by its residues modulo p and q.
For any two vertices (a,b) and (x,y) in U, X U,,
the adjacency condition ay = bx (mod pq) is
satisfied precisely when (x, y) is a scalar multiple of
(a, b) by some unit k € U,,. This occurs because in
Z,, the modular bilinear is equivalent to the linear
dependence condition x = ka and y = kb for some
unit k.

For any fixed vertex v = (a, b) € U, x U, define

its proportionality class as follows:

[v] ={kv:k € U,}
Since all vertices in [v] are scalar multiples, then,
they form a complete subgraph K_(p — 1)(q — 1).
Moreover, there are exactly (p —1)(q — 1) such
disjoint cliques.
Corollary 3.2. For n = pq, the unit subgraph H,, has

edge count:
P-1)(a-1)

[EH)I=@®-1D(@-1) P-D@-D-L
i=1
Case 3: If n = p? for an odd prime p.
When n = p?, the unit subgraph H,, has a special
structure. Unlike the cases n = p or n = pq, units in
Z,2 can be expressed in two parts: a unit modulo p
plus a multiple of p. The adjacency condition ay =
bx (mod p?) creates cliques based on proportional
pairs, but only within distinct directions modulo p.
This leads to the following precise decomposition.
Proposition 3.3. Let n = p? where p is an odd
prime. The graph H,, decomposes into p(p — 1)
disjoint cliques, each isomorphic to K,_;.
Proof: The group of units U,2 has order ¢(p?) =
p(p —1). By the Chinese Remainder Theorem,
every unitu € U,z can be expressed uniquely as:
u = a + bp (mod p?), wherea € {1,...,p —
1},b €{0,..,p — 1}
Here, a is a unit modulo p, and b parametrizes the
lift to Z,2
Two vertices (a, b), (x,y) € U2 x U, are adjacent
in H,, if and only if:
ay = bx (mod p?).
For units, this simplifies to the proportionality
condition (x,y) = k(a, b) (mod p?) for some k €
U,2. Now, fix a vertex v = (a,b). Its scalar
multiple class is:
[v] = {kv: k € U,z}.

By considering residues modulo p, there are exactly
p — 1 distinct values of k (mod p) because a #
0 (mod p). Each such k can be lifted to p possible
values modulo p?, but only p — 1 are units in Zyy2.
Consequently, the class [v] forms a complete
subgraphK,_;, and there are ¢(p®) =p(p —1)
such disjoint cliques, corresponding to each distinct
proportionality class v modulo p.
Crucially, if two vertices (a,b) and (x,y) are not
scalar multiples modulo p, then ay # bx (mod p),
which implies ay % bx (mod p?). Thus, no edges
exist between distinct cliques. H
Corollary 3.3. For n = p?, the unit subgraph H,, has
edge count:
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p(p-1)
EM) =pp -1 ) plp-1 -t
i=1

Example 3.1. For p = 3, Hq consists of 6 disjoint
copies of K, (edges) as shown in Figure 1. Units in
U, are {1,2,4,5,7,8}, and adjacency holds if and
only if (x,y) = k(a, b) (mod 9) for k € U,.
Remark 3.1. In all three cases mentioned, the unit
subgraph H,, shows:
i. Disconnected components (cliques) mean that

diam(u, v) = oo for vertices in different cliques.
ii. Each cliqgue K,_;, Kp-1)g-1 and Kpp-1)

includes triangles but has no cycles shorter than

3.i.e., girth(H,) = 3.

This uniformity occurs because adjacency in H,, is
based only on scalar multiples within disjoint
equivalence classes.

7.2 {1, 8 . (1,1}

Figure 1: The graph of Units H,,

While the unit subgraph H,, shows clear clique
decompositions, the zero-divisor subgraph T, has
more complexity because of annihilation relations.
We will now analyze T;,,, where adjacency represents
ideal interactions instead of multiplicative inverses.

1.2. The graph of zero divisors T,

In this section, we examine the graph [, which
includes pairs of zero divisors in the ring Z,, X Z,,.
Adjacency is defined by the bilinear form B. This
bilinear congruence captures modular orthogonality

and shows how zero divisors interact. For composite
n, the structure of T, is strongly affected by the
prime factorization of n. This leads to distinct
connectivity patterns, clique formations, and
maximal independent sets.
Case 1: If n = 2p, where p is an odd prime.
Let p is an odd prime. The set of zero divisors D,,
can be written as D, = M, U M,, where M, =
{0,2,4,6,...,2p — 2}, is the principal ideal
generated by 2 in Z,, and M,, = {0, p}. Furthermore,
we refer to M, /{0} by M; and the set M,,/{0} by M,,.
The sets M, and M,, form additive subgroups of Z,,
and they exhibit an annihilator duality:
i Every element k € M, satisfies k-p =
0 (mod n), meaning M, € ann(p).
ii. Conversely, p annihilates all elements of
M,, i.e., M,, € ann(k) forany k € M,.

This structure highlights the interplay between the
ideals M, and M,, where each subgroup consists

precisely of the annihilators of the other.
We partition the set of vertices D,,, X Dy, into the

following subsets:
So = {(0,0),(0,p), (1, 0), (p, )},
S, ={(a;,0):a,€M;,1<i<p-1},
S, ={(0,a)):aq;, EM;,1<i<p-—-1}
S, = (@) a €M 1< i<p-1)
Sy ={(a; b):a;,b; € M3,1 <i<p-—1}.

Ss={(p,a;))aq; EM;,1<i<p-1},
Se ={(app)a; €Mz, 1<i<p-—1}

We now examine the zero-divisor graph Iy, starting
with a classification of vertex degrees. This basic
analysis shows how annihilation relations in Z,
determine connectivity patterns in I',,,.

Proposition 3.4. For a, b € M, the degree of a
vertex v € V(I,,,) are classified as follows:

p? +2p if v=(0,0)
2p+1 if v=1(a,0)or (0,a)
2p—-1 ifv=(ap)or(pa)

deg(v) = p +p—1 ifv=(p0)or(0,p)
p+2 if v=1(a,b)
p? ifv=(pp)

Proof: By definition, the vertex v = (0,0) is
adjacent to each single vertex in V(T;,), and since the
number of vertices in this graph is |V([})| =

(n— ¢(n))2 =(p +1)? =p?+ 2p + 1. Since the
adjacency relation is defined on different vertices,
then we have
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deg(v) = p? + 2p.

For a € M3, let v = (a, 0), then v is adjacent to all
vertices with linear dependence, i.e., to each vertex
in S; =5,/{(a,0)}. Also, v is adjacent to vertices
with annihilator entries, i.e., S,, where 0,p €
ann(a). Moreover, v is adjacent to the vertices in
S, Since |S{| =p —2,|Sy| =4,and |Sg| =p — 1.
Thus,

deg)=(p—-2)+(p-D+4=2p+1.
In the same way, the degree of the vertex v = (0, a)
is2p + 1.
Consider v = (a, p), then v is adjacent to vertices
with linear dependence, i.e., to vertices in S; =
Se/{(a,p)}, and to the vertices with annihilator
entries, i.e., S§ = So/{(p,0), (p,p)}. The third type
of adjacent vertices to v is mixed vertices S;, Since
[Sel =p —2,1S5] = 2,and |S;| = p — 1. Thus,

degw)=(p—2)+(p—1+2=2p—-1
Likewise, the degree of the vertex v = (p, a) is 2p —
1.
Let v = (p, 0), since ann(p) = M,, then the vertex
v is adjacent to vertices with annihilator entries, i.e.,
S., and to the mixed vertices in the set Ss. Since
ISa] = p?, ISs] =p — 1. Thus,

deg(v) =p*+p—1
Similarly, the degree of the vertex v = (0, p) is p? +
p—1
Now, we investigate the degree of the vertex v =
(p,p). The vertex v is adjacent to the vertices in the
set 1,55, 55,5, and the vertex (0,0), That means
there are 3(pp—-1)+ ®*-3p+2)+1=p?
vertices adjacent to this vertex. Since (p,p) is not
adjacent to (a,p) nor to (p,a) for any a € M,,
because the adjacency condition fails. Thus,
deg (v) = p*.
Finally, let v = (a, b) for any a,b € M;. It is clear
that (a, b) is adjacent to the vertices in the set S,. By
the definition of the graph I;,, v is adjacent to
vertices with multiple coordinates (ma, mb), which
are p — 2. Thus,
degv) =4+ (p—-2=p+2.1

Corollary 3.4. The edge connectivity of T, is
K'([,) =p+2.
Proposition 3.5. The graph T, satisfies the
following properties:
i. The vertex (0,0) is the unique centre, with

eccentricity 1.
ii. The diameter of [, is diam(I;,) = 2.
iii. The girth of T, is girth(T},) = 3.

Proof: (i.) Consider v = (0,0). Since v is adjacent

to all vertices in the graph I, then the eccentricity

of v is 1, and for any other vertex (a,b), its

eccentricity is at least 2 from some nonadjacent
vertex (x,y). Hence, v is the unique centre.

(ii.) Since v = (0, 0) is a unique center of the graph

[, with eccentricity 1, then for any two nonadjacent

vertices (a, b) and (x, y), they share v as a common

neighbour. Thus, the greatest distance between them

is 2, which proves (ii).

(iii.) From the definition of B, the graph I, is simple

with no multiple edges, so girth(T,,) > 2. For any

adjacent vertices (a,b) and (x,y), the set

[{(0,0), (a, b), (x,¥)}] induces a 3-cycle, which is

the smallest possible. Hence, the proof follows. B

Proposition 3.6. For any fixed a € M3, the set

I, = {(a,b):b € My} U{(0,a)}

is a maximum independent vertex set in I, with

independence number a(l;,) =p + 1.

Proof: For any two vertices (x,y) and (a, b) in I,

adjacency requires ay = b x (mod 2p), which

holds only if they are linearly independent. For

(a,b) and (0, a), adjacency requires a - a = b.0 =

(mod 2p), ie., 0=a?(mod2p). Since 0%

a? (mod 2p) for any a € M;. Thus, (a,b) and

(0,a) are not adjacent. Since all vertices in

{(a,b):b € M,} are linearly independent, and no

annihilators are involved in {(a, b): b € M,}. Thus,

distinct vertices in this set are non-adjacent.

To prove that I, is the maximum, consider adding

any vertex (x,y) €l,. Thus, (x,y)¢€

{{0,0), (0,p), (»,0), (»,p), (a,p), (p,a)},  which

implies (x,y) € {(ma,a):a € M;}, for some

positive integer m, then an edge will be created with
at least one wvertex in I, such as (ma,a)
and (a, k a), for some k satisfies k.m = 1. Hence

I, is the maximum.

Since the cardinal number of the set M5 is p — 1.

Thus, there are p — 1 choices for b #= 0in (a, b).

Including (a, 0) and (0, @) adds p — 1 more vertices.

Adjusting for distinctness, the total is (p — 1) + 2 =

pr+1.1

Remark 3.2.

i. The set I, is not unique; another maximum
independent set exist, which is {(b,a):b €
M} U {(a,0)}in I3,

ii. There are 2(p — 1) maximum independent sets
inT,.

iii. The vertex (0,a) € I, can be replaced with the
vertex (p, a).

iv. All maximum independent sets of sizep + 1 are
isomorphic.
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Example 3.2. Consider n = 2 X 7, the set:
I ={(2,0),(2,2),(2,4),(2,6),
(2,8),(2,10),(2,12),(0,2)}

is an independent set.
Proposition 3.7. The vertex connectivity of I, is
k(I3p) = 4.
Proof: The vertex (0,0) is connected to all the
vertices in I,. If we remove it, the remaining
vertices form a connected subgraph. The vertices
{(0,p), (p,0), (p, p)} save the connectivity with the
vertices in M, X M,. To isolate the vertices in
M, x M,, we must remove all vertices
(0,0),(0,p), (p,0) and (p, p), as each component is
presented by linear combinations of a vertex (a, b) €
M, X M, so the resulting subgraph T,/
{(0,0),(0,p), (»,0), (p,p)} isomorphic to (p —
1)K,_,. Hence k(Iy,) = 4.
Proposition 3.8. The graph I, contains only two
distinct maximum cliques of size 2p.
First Clique:
¢, =1{(0,0),(2,0),(4,0),..,2p

—2,0),(0,p), (2,p), ... 2p — 2,p)}.
Second Clique:
Cr = {(0,0),(0,2),(0,4),...,(0,2p

=2),(®0),®2),...(p,2p = 2) }.
Proof: Consider ¢, from the definition of I, itis
clear that any two vertices (a,0) and (b,0) are
adjacent. Also, any two vertices (a, 0) and (¢, p) are
adjacent. In addition, any two (c,p) and (d,p) are
adjacent. The clique Cg is symmetric to C,, with
coordinates swapped.
To prove the maximality, consider adding any vertex
outside C;, (e.g., (p, p) breaks completeness: (p,p)
is not adjacent to (2,p) because 0 % p? (mod n)
fails.
The number of vertices in both cliques is:

2p — 2
leal = leul = (P4 1) x2
=(p -1+ 1)x2=2p
and the vertex degreeis2p — 1.l
Remark 3.3.
i. The maximum cliques Cg and C; intersect only
at (0,0).
ii. Both cliques exploit the universal adjacency of
(0, 0) and the zero-product property of M, U M,,.

Corollary 3.5 The clique number for the graph I,
is:

a)(sz) =2p
Proposition 3.9. For an odd prime p, the graph I,
is supereulerian.

Proof. To prove that T, is supereulerian, we
construct a spanning closed trail.
The subgraphs induced by the subsets S, to S
exhibit the following properties:

i The subgraph defined on S; forms a clique
K,_1, S1USe and S3USs form a larger
clique Kz (p—1).

ii.  The subgraph defined on S, consists of p — 2
disjoint cliques, each isomorphic to K,_;,
denoted as the following:

Ay ={(ayi by):ay;, by EM;, 1< i <p—1}

Ay = {(azi b2i): az4,bp E M3, 1 < i< p—1},

Ap—2 = {(@p-2)i bp-2)1): Ap-2)i» bp-2)i € M3,
1<i<p-1},

foreach j€{1,2,..,p—2} and a; # bj;
the subgraphs of I, on the sets A4; forms
cliques Kj,_;.

Since every complete graph contains a Hamiltonian
path, denoted P, and P,, we can construct a
spanning closed trail by concatenating paths from
each subset as follows:
{(0,0), Ps,} U Ps, U{(0,p), Ps,} U {(p, 0), P5,} U Ps,

U {(p,p), Pa,} U{(0,0), Py}

U {(0,0),Py,} U ...

u{©0).Ps,_,, (0,0)}
This trail is closed and spans all vertices of I,
proving the supereulerian property. ll

The closed trail in Proposition 3.9 results from
systematically connecting paths across the grouped
subsets S, to S,. Figure 2 shows this process for I
(where p =5), demonstrating how Hamiltonian
paths from cliques A; and connector vertices like
(0,0) come together into a single cycle.

Corollary 3.6. For p =3, the graph Ty is
Hamiltonian.

Proof: Using the same partition as above, the set S,
in Ty reduces to a single clique. The constructed
closed trail simplifies to:

{(0,0), P, }u P, U{(0,3),P,} U
{3,0),P5,} U Ps, U{(3,3),Ps, (0,0)},

Since all edges in this trail are distinct and every
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(0,5) (5,0)
Figure 2: shown is closed spanning trail in Ty,,.

vertex is visited exactly once; the trail forms a
Hamilton cycle. Thus, Iy is Hamiltonian. l

Case 2: if n = p q is a composite.

Let n = pq, where p and g are distinct primes with
p > q. The set of zero divisors in Z,, decomposes
into the union of two principal ideals:
D,, =M, UM,
where M, = {kq: 0 < k <p — 1} is the maximal
ideal generated by g, and M, ={mp: 0 <m <
q — 1} isthe ideal generated by p. These sets exhibit
an annihilation duality:
i. Every x €M, satisfies x-q =0 (modn),
meaning M,, € ann(q).
ii. Similarly, every y€ M, satisfies y-p=
0 (mod n), so M, < ann(p).

This decomposition reflects the Chinese Remainder
Theorem, as Z, = Z, X Z4, and the zero divisors
arise precisely from the non-trivial multiples of p
and q.

When n = pq for distinct odd primes p, and q, the
adjacency condition induces a rich structure
reflecting the arithmetic of Z,,. The vertex degrees in
[,q reveal fundamental properties of this graph,
including its connectivity, symmetry, and
relationship to zero-divisor interactions in Z,, X Z,,.

Before we establish key propositions characterizing
degrees of vertices, we partition the vertex set into
subsets S, through S;,, as follows:

SO = {(0’ O)}:
S, ={(a,0):aq; eM;1<i<p-1},

$; ={(0,a):a, €Mz 1<i<p—1}

$; ={(apa):a; €My 1<i<p-1}

Sy ={(anpq—a):a, e M, 1<i<p-1},

S = {(ai,bi):ai,bi EM;,1<i<p- 1}’

Se ={(x;,0):x; € Mp1<i<q- 1},

S; = {(O,Xi):xi € M;,l <i<q- 1}’

Sg = {(x,-,xi):xi EM;,1<i<q- 1}’

So = {(pq —x)ix; €M1 <i<q—1),

S0 = {(x, y)ix,yi € M1<i<q- 1},

S = {(ai,yj):ai EMy,y, EMy1<i<p-1,1

<jsq-1},
Siz ={(x,b):x; €My, b €M;,1<i<q—1,1
<j<p-1}

The sizes of these subsets are:
[S1] =152 = [S3] = [Sal =p — 1,
ISsl=@-D-D-2(p-D=p*>—4p+3,
ISl = 1571 = S| = |Sel = q — 1,
ISl =(@-D@-1D-2(g-1) =q*—4q+3
IS1] =182l = (@ —1)(q— 1)

Proposition 3.10. For x,y € M, and a,b € Mg, the

degree of vertices in I, are classified as follows:

+a)?-20+q) if v=(0,0)
| @?+@p@-1q—-1 ifv=1_(a0)or(0,a)

pq—1 if v=(ax)or(xa)

deg(v) = { P +(@—-Dp—-1 ifv=(x0)0r(0x)
q@?+p-2 if v=(ab)
pt+q-2 if v=(xy)

Proof: Since the vertex v = (0,0) is adjacent to
each single vertex in V(I},,), and the adjacency
relation is defined on different vertices, then

deg(®) = (n—¢(m)" —1= (0 + 0)* =20 + 9).
Consider v = (a,0), then v is adjacent to the
vertices in Sy, Sy, Se, S7,Sg, Sg, S10 and Sy ;. The first
set S, represents a trivial annihilator, while the set S;
represent vertices with linear dependence, and the
sets Sg, S, and S, , represent vertices with annihilator
entries. Since |Sy] =1, |S;] =p —2 ((a,0) is not
counted), [Sel = IS7] = [Sg] = [Se] = q—1,
IS0l = q* —4q + 3, and Sy, = (p — D(q — D).
Thus,

deg(v) =1+@(p-2)+4(q@—-1)+

(@*—49+3)+(@—-D@-1)
=¢*+(-1Dq-1

In a similar manner, the degree of the vertex v =
(0,a)isq?>+ (p—1)qg — 1.
If v = (a, x), then v is adjacent to the vertices in Sy,
vertices in S;, and to the vertices with annihilator
entries, i.e., vertices in S,. Furthermore, vertices

Univ Zawia J Nat Sci 2025:2;56-70
http://journals.zu.edu.ly/index.php/UZJNS

63



Daoub & Lasfar

with linear dependence, i.e., vertices in S;;. Since

1Sol =1, IS1l=p—1, IS;]=q—1, and [Sy4| =

(p —1)(g — 1) — 1 ((a,x) is not counted). Thus,

deg) =1+(@-D@-D-1+(@-1

+(p—1) =pq—-1

Likewise, the degree of the vertex (x, a) is pq — 1.

Let v = (x,0), as usual, v is adjacent to S,. Since

ann(p) = M,, then v is adjacent to vertices with

annihilator entries, i.e., v is adjacent to vertices in

Ss,S,, and Sg. Moreover, it is adjacent to vertices

with mixed entries, such as vertices in S;,. Also, v is

adjacent to its linearly dependent vertices, i.e.,

vertices in S¢. Furthermore, v is adjacent to the

vertices in the sets S; and S,. Since |S,| =1, |S;] =
1S2] =151 = [Ssl =p =1, |Ss5| =p® —4p +3,

[Sel = q¢ —2 ((x,0) is not counted), |S;2] = (p —

1)(q — 1). Thus,

deg()=1+4(p—1)+p?—4p+3+(q—2)

+(-D@-1
=p>+(@-Dp-1

Similarly, the degree of the vertex (0,x) is p? +

(@q—Dp-1.

Let v = (a,b) for any non-zeros a,b € My. It is

clear that (a, b) is adjacent S, and adjacent to the

vertices in Sg, Sq and S, 5. The vertex v is adjacent to
all linearly dependent vertices, i.e., vertices of the

form (ma, mb), and they are p — 2 vertices. Also, v

is adjacent to the vertices in the sets S, and S,.

Typically, since [Sol = 1,183 = 1S4l =p—2

((a,b) is not counted), |S¢| = |S;| = |Sg| = |So] =

qg—1, and |S;4] = ¢*> —4q + 3. Thus, the total

degree of v is
deg()=1+(p—-1+4(q—1)+q*—4q+
3=q*+p-2.

Finally, if v = (x, y) for any non-zeros x,y € M. It

is obvious that (x,y) is adjacent to S, and adjacent

to the vertices in the sets S;, S,, S5, S, and Ss. Also,
it is adjacent to linear dependence vertices (mx, my)
for some 1 <m < q—1. Since [Sy| =1, |S;] =
1S21 = 1Ss] = 1Sal =p =1, |Ss| =p*—4p +3
and there are g — 2 multiples of v. Thus, the total
degree of v is:

deg(w) =1+4(p-1D+(@P*—4p+3)+
(@q-2)=p*+q-201

Remark 3.4.

i. The degrees reflect the number of solutions to
xb = ay (mod pq), tied to the Chinese
Remainder Theorem.

ii. The structure generalizes to arbitrary n via prime
factorization, with  degrees  computable
multiplicatively.

iii. There is a spanning tree with exactly (¢(n))” —

1 edges and (q,’)(n))z vertices, which
corresponds to: {(0,0), (ay, b))} U
{(0,0), (ay, b;)} U ..U {(0,0), (ay, by)}, where
k= (n — ¢(n))2 -1

iv. The graph T}, is not regular, where vertex

degrees vary based on the linear dependence of
their structure.

Corollary 3.7. The edge connectivity of Ty, is
K'(Tpq) = Pa =

Proposition 3.11. The cut vertex set of I, is the
ideal-generated subgraph:
V.= M, xM, = {(kp,lp):k,l € {01,..,q—1},
where M, =(p ) € Zy,.
Proof: By definition, M, x M, includes all pairs
where both coordinates are multiples of p (zero
divisors modulo q). From Proposition 3.10, the
vertices in V. have degree p2+ (¢q— Dp—1 or
higher.
The subgraph M, x M,, where both coordinates are
multiples of g, becomes disconnected. For (a, b),
(x,y) € M, X M,, the adjacency condition implies
that g2 divides (ay — bx), which only holds if
(a,b) = k(x,y). Without V,, there are no paths
between different proportional pairs. Pairs like
(a,x) with a € Mg, x € M,, lose all connections to
M, x M, when V, is removed, because V.. previously
bridged them via (0,0) and (0, x).
Observe that no proper subset of V. suffices keeping
(0,0) preserves some paths, but M, X M,\{(0,0)}
still disconnects M, x M, due to the constraints of
the Chinese Remainder Theorem. Smaller sets fail
to separate all ¢ — 1 equivalence classes in M, x
M, R
Corollary 3.8. The vertex connectivity of the graph
T, is a(T,,) = p?, achieved by the minimal cut set
V. =M, X M,.
Example 3.3. Forn = 15, where g = 3,p = 5:

Ve = M5 x Ms = {(0,0), (5,0), (10,0, (0,5),

(0,10), (5,5),(10,10),(10,5),(5,10)}.

Removing V, leaves 4 isolated cliques from
M3 x M5 = {(3,0), ..., (14,14)} since (0,0) €V,
has already been removed. There are also two
larger cliques with mixed coordinates. See Figure
3.
Proposition 3.12. The graph [}, contains two
distinct types of maximum cliques, based on the
graph definitionon D,, X D,,:
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Left clique equivalence classes of linearly dependent and
G = {(k pa):0<k<qg-1lac€ Mq}. annihilator coordinator vectors over D,, X I,,.
Right clique In the graph Iy s Figure 4 illustrates the maximum
Cr = {(a,k p):0<k<qg-1lac€ Mq}- left clique including smaller left cliques.
Proof: For any two vertices (ky p, a,), (k, p, a,) € Corollary 3.9. In the graph I,4, the clique number
C,, their adjacency condition is: w(Tyy) = pgq
(k1 p) (ay) — (a))(ky, p) = p(ky a, — ky ay), Proposition 3.13. Let n =pq for distinct odd

as kl az - kz al E Mq, then p(kl az - kz al)
0 (mod pq), which implies k;a,—k,a,;

primes p, q. The set
I, = {(a,ma):m =0,12,..,p—1,a€ M;} V]

0 (mod q). {(x,b)},
{35 {3.10) {12, 9} 9.3} {12, 3} {98
.--.{3' 0} gl 10} T (6.0}
&= s AR 9
e 3
-~ o
I-._E'O} b pges | B | el oy @5 {8, 12} | 3.6} {6, 9 | 312}
Sty S
A\, L. 5
12’0
{0. 8} {0, 9} {12, 8) 19.12) {12,12} 19. 8}
kAN
W 7 ! "'-.\,' <7
22N | der | st 12 .23 B9 .6} L B.3)
b S =5 -',“ e . - —:’", 2=l o=} ."_;. \._'; & 5]
.4{10. 125 S~ A/ {5, 3}

K |/ {i078)

Figure 3: The graph I;; without vertex cut set 1/,

Moreover, this is the maximum clique (no proper where x € M, andb € Mg, is a maximum
superset is a clique) because extending any external independent set in T, with a(l"pq) =p+1

vertex (x,y) withy = 0 (mod q)andy € M, 10 C, Proof: Letv, = (a,mya)and v, = (a, m,a) be any
breaks adjacency for some pairs, where (kp)y # two vertices in I,. Based on the adjacency condition,
0 (mod pq). Similarly, Cr is a right maximum then a(m, a) — (my a)a = a®(m, —m;). Since
clique. M m, —m; #0 and a? £ 0 (mod pq). Thus, the
Remark 3.5. _ L condition fails. If v, = (x, b) then ab — (m, a)x =

i. The intersection of any left and right clique is ab % 0 (mod n), which means I, is an independent
exactly {(0,0)3. vertex set.

ii. There are more smaller cliques, such as To prove the maximality, suppose we add any other
{(0,0),(0,a,), (0, a5), .., (0,a,-1 )} and vertex (x,y) € D, x D,, to I,. Then, If x € M,,
{(0,0), (x1,0), (x2,0), ..., (¥g-1, 00}, where then (x, y) is adjacent to (a, 0) € I, (since x - 0 —
m=pq—¢@pq)+1=p+q. a-y=0 (modpgq) if and only if y=

iii. If the vertex cut set is removed from [,,, the 0 (mod p), but y must be a multiple of a to avoid
resulting graph decomposes into a union of adjacency with (a, 0), leading to (x,y) € I,.
complete subgraphs (cliques) corresponding to
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1.0}

{10,12)

(10.9) @

10,6/

(0.5®

(10,0}

15,12}

Figure 4: The maximum left clique in I5

On the other side, if x € M,,, then (x, y) is adjacent
to (8,b) € I, forsome f € M, (sincexb —fy =
0 (mod pq) if and only if y = 0 (;nod q), but y
must be a multiple of p to avoid adjacency with
(B, b), leading to (x,y) is adjacent to (a, m a).
Therefore, the set I, cannot be extended with a
vertex (x,y) € My x M,  without violating
independence. Hence I, is a maximum
independent set in [,,.

To compute the a(Ty,), the subset {(g, mq):0 <
m < p — 1} contains exactly p distinct vertices.
Adding (a, a), which is distinct from all vertices in
I, gives p + 1 total vertices. l

Proposition 3.14. For odd primes p and g with p >
q if the vertex connectivity x(T»;) = p + 1, then the
graph I, is Hamiltonian.

Proof: To determine the Hamiltonicity of I,,, we
combine our analysis of the graph's partition into sets
S, through S;, (Section 3.2) with the classical
sufficient condition of Chvatal and Erdés (Theorem
2.2). This condition states that a graph is
Hamiltonian if its vertex connectivity k(G) is at least
its independence number «(G). From Proposition
3.13, we know that a(T’,q) = p + 1, and according

{0. 6}

_ {09}

@i 12
@is. 0}

=5, 3}

5.8

5.9

to this proposition, K(qu) > p + 1. Therefore, the
Chvatal-Erdés condition holds as long as I, is
connected, which we will confirm through explicit
construction.
To construct a Hamiltonian cycle, we exploit the
graph’s partitioned structure (section 3.2) and
connectivity properties.
The subgraph defined on the set S5 contains p — 3
components (cliques), while the set S;, contains g —
3 components (cliques). We denote these
components as:
A ={(ay by)iay;, by €M), 1<i<p—1},
Ay = {(agi, by): azi, by € Mj,1 < i <p—1},

Ag-3 = (-3 bg-9)1): ag-3y0 bg-2)1
eEM1<i<p-1}
for Sg, and
Xy = {1 Y1) %1001 EMp,1<i<q—1}
Xy, = {(%20Y20): %20, Y21 € Mp, 1 < i < q—1},

Xg-3 = {(X(q-)0 Y(g-2)1): X(q-20 Y(q-3)i
EM;1<i<q-1},
for S;,.
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{5, 1g}{

0.0} (6.6} 3.3} g )

. g‘_\{12. 2} (12, 1{25} o
If - s
312 S {12.8)
_{9.6) 912
{105} 5.5
,.{6-“12} (6.3)
(12,9 6.9
0.3 _0.10)
3.6} {9, 10}
(10,0} | {12, 5}
{10, 6} 1{12,0)
| 5.3} 3.5)
,(5.9) /6.10)
{0, 3} 8.0}
[(10.12) _{0.5)
09 ©0
i _{5.8) .--{12\' 10}
{10, 9} {6:5}
{5, 12} 6,16}
{0.3¥

o {0, 12}

@

(19,310,610, 1679

Figure 5: For p = 5 and g = 3, shown is the Hamiltonian cycle of the graph T;5

Each is constructed to preserve specific algebraic
relationships. These subsets form complete
subgraphs, ensuring the existence of Hamiltonian
paths within them.

Key subsets include S5 and S;,, which decompose
into smaller complete subgraphs A4, ...,4,_3 and
X1, .., Xq_3, respectively. Each of these components
supports a Hamiltonian path, denoted P,, and Py,.
The proof proceeds by systematically connecting
these paths: P, links to P, which then connects to
Ps, ., and this chain continues through Pg, ,(0,0), Ps,,
P;, and Ps_ ensuring all vertices are traversed
without repetition.

To connect more paths, Ps, must be connected to a
path P,, for 1 < i < p — 3, then a path PX]. for1l <
j < q—3. Since p— 3 is greater than q — 3, we
supplement more vertices excluded from P , P ,
Ps, and Pg,, ensuring that all of them are minimized

to smaller paths up to at least one vertex remains to
preserve connectivity between Hamiltonian paths.
This supplement allows us to connect the rest of the

paths P,;, and this creation of paths ends with a path
P,;, which can be connected to the path Ps,, P, then
Pg,. This flexibility guarantees that the construction
remains valid even when Ps, and Ps  lack enough
connectors.

The final connection loops back Pg, to Ps,,
completing the Hamiltonian cycle. However, if we
subtract three vertices from the cut vertex set, which
are {(0,0),(0,x;),(x;,0)}, we get the number of
vertices required to connect the paths 4;, Ps, and
k(Tpq) — 3 = q* — 3 = p — 2. Therefore, the graph

Gy, admits a Hamiltonian cycle if x(Tp,) = p + 1.
|

Example 3.4. Considern = 5 x 3, then x(I;s) = 9,
and p +1 = 6. It is Hamiltonian. See Figure 5.
However, if n = 11 x 3, then k(I33) =9, and p +
1 =12. So, I35 isn’t Hamiltonian, because the
Hamilton paths such as Pg, and P, are not adjacent.
Based on the sufficient condition for an undirected
graph to be supereulerian, provided by Theorem 2.3,
we have the following:
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{20, 15}

Q

o

{15, 10}

{15, 0}

{10, 20)

Figure 6: Shown is complete graph T,5, for p = 5.

Corollary 3.10. If k(T,,) =p+ 1. Then T,, is
supereulerian.

Proof: A graph is supereulerian if it contains a
spanning closed trail. By Proposition 3.14, T},, with

k(Tpg) =p+1 is Hamiltonian, then it has a
Hamiltonian cycle Cy that visits every vertex exactly
once. Since Cy is a closed trail spanning all vertices,

[,q is trivially supereulerian.

Remark 3.6. The converse is false; supereulerian
graphs need not be Hamiltonian (e.g., the union of
two cycles sharing one vertex is supereulerian but
not Hamiltonian).

Corollary 3.11. For odd primes p and g with p =
q + 2, the graph T, is Hamiltonian.

Proof: All vertices in the following Hamiltonian
path are included exactly once, as each subset's

Hamiltonian sub-path covers its vertices, and the
linking process preserves this property. Thus, the
constructed cycle is Hamiltonian.
{PA1' (1, %)} U {PAz' (x2, X))} U ...
U {PAq—l’ (xq_l,xq_l)} U
{(al, a), le} U {(az, a,), PXz} U..
U {(aq-3 ag-3), Px,_;} U
{(ag-2,a4-2), (ag-1,a4-1). (ag,aq). (g+1, ag41)}
u
Ps, U Ps, UPs, UPs U{Ps,(0,0)}UPs, UP;, U
P, UP, . A
Corollary 3.12. For odd primes p and q with p =
q + 2, the graph T, is supereulerian.
Case 3: If n = p? for an odd prime p.
When n = p? where p is an odd prime. In [)2 every
creates the zero-divisor set:
Dy={kp:0< k<p-1}
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The annihilator of any zero divisor kp is the

principal ideal < p >.

For any two vertices (a,b) = (kyp,k,p) and

(x,¥) = (k3p, kyp) in D,z X D2, the bilinear form

simplifies to:
ay — bx = (kik, — kyk3)p? = 0 (mod p?).

This congruence holds for all k; € Z, because p?

always divides (k k, — k,k3)p?. Therefore, every

pair of distinct vertices in I,z is adjacent, making I,

isomorphic to the complete graph K,z

This simplicity sharply differs from the situation

where n = pq with distinct primes. In that case, non-

adjacent pairs appear. For instance, (p, 0) and (0, p)

are not adjacent.on-unit element of Z, is a multiple

of p, which

Proposition 3.15. For any odd prime number p, the

graph I,z is complete

Proof: Completeness follows from the universal

vanishing of bilinear congruence, while uniqueness

holds because for n = pq (distinct primes), the
condition ay = bx (mod pq) fails for pairs like

(p,0)and (0,q). A

The complete structure of I,z from Proposition 3.15

is shown in Figure 6. This figure illustrates T2 for

p = 5. All possible edges are included, confirming

the universal adjacency of zero-divisor pairs (kp, Ilp)

iNZy2 X Zyz2.

When n = p?, zero-divisor dominance leads the

graph I,z to become a single maximal clique. Thus,

w(sz) =p2.

Remark 3.7.

i. Unlike composite n = pq, zero-divisors in Z,:
have identical annihilators ( p ), making all pairs
adjacent.

ii. While Hy,. decomposes due to multiplicative
structure, T2 collapses into a single clique from
additive uniformity.

iii. The diameter of the graph T,z is diam(T,2) = 1
as T,z is complete, and the girth is girth(T,2) =
3.

Corollary 3.13. The graph is Hamiltonian and
supereulerian.

Our study of G, in these cases leads to a shared
understanding: the prime factorization of n
determines the overall structure of the graph. We
summarize these findings below and explore their
larger implications.

4. Conclusion

In this work, we have studied the graph G,, defined
on Z, X Z, using the adjacency condition ay =
bx (mod n). By breaking down G,, into unit and
zero-divisor subgraphs, we uncovered a clear
contrast. The unit subgraph H,, consists of separate
cliques determined by Euler’s totient function
¢(n). In contrast, the zero-divisor subgraph T,
shows the complex interactions of annihilation
ideals and prime factorization. Our study of the
cases n = p2, n = 2p, and n = pq showed how
the algebraic structure of Z,, directly influences the
graph’s shape. This ranges from the complete
graph K,z for n =p? to the Hamiltonian and

supereulerian properties appearing under certain

connectivity conditions for n = pq.

List of symbols

Symbol Description
B The bilinear form function
Zn, The ring of integers modulo n
U, The group of units in Z,,
D, The set of zero divisors (including zero)
ann(a) The annihilator of a
o) Euler’s totient function
M, The finite set of multiples of 2
M, The finite set of multiples of p
M, The finite set of multiples of p without
zero
#(4) The cardinality of the set A.
S; A partition setof D,, x D,, for0 <i < 12
A; A partition set of S5 for n = pq.
X; A partition set of S;, forn = pq.
G, The whole graph is defined on the ring
Z,, X Z,, by the bilinear form B
H, The subgraph defined on U,, x U,
[, The subgraph defined on D,, X D,,
K, Complete graph with n vertices
diam(G) The diameter of a graph G
girth(G) The girth of a graph G
w(G) The clique number of a graph G
deg (v) Degree of a vertex v
k(T,) Vertex Connectivity of a graph [,
I, Independent vertex set
(o) The left clique
Cr The right clique
(a,b)~(x,y) Shows the adjacency between the vertices
(a,b), (x,y)
k' (T,) Edge connectivity
P, A Hamilton path of the components S;
Py, A Hamilton path of the components A;
Py, A Hamilton path of the components X;
a(l,) The size of a maximal independent set in
[
6(6) The Minimum degree of a graph G.
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