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ABSTRACT

For a composite number n, we explore a topological space on the ring of integers modulo n, we use basis sets formed
by solutions to quadratic residue equations, where elements are units modulo n. This definition allows us to
investigate the algebraic relationships among solutions, focusing on properties like clopen sets, closure, and interior
operations. Additionally, we examine the continuity of mappings between the group of units in Z/nZ and quadratic
residues, alongside the quotient topology induced on this group of units. A comparison of the separation properties

of these topological spaces is also presented.

Keywords: Topological space, Quadratic residues, Finite rings, Quotient topology, Quotient topology, Modular

arithmetic, Group of units.
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1. Introduction
The study of topologies on modular arithmetic

structures, such as the ring of integers modulo n, has
gained significant attention due to its applications in
algebra, number theory, and computer science.
Researchers have explored various topologies on Z,,,
revealing connections between algebraic structures
and computational frameworks. Notably, the Zariski
topology, introduced by Oscar Zariski, defines
closed sets as the zeros of polynomial functions,
offering a bridge between algebraic structures and
geometric intuition [1]. Saeid Jafari, Sang-Eon Han,
and Jeong Min Kang have examined alternative
topologies for Z,, extending classical structures to

quasi-discrete and Khalimsky-type topologies [2].
These innovations have provided new perspectives
in digital geometry, fixed-point analysis, and
homotopy theory, enriching our understanding of the
interplay between topology and modular arithmetic.
Quadratic residues play a central role in number
theory, particularly in modular arithmetic and the
distribution of prime numbers. These residues offer
deep insights into the solvability of quadratic
equations in modular systems, linking number
theory with algebraic structures. When the modulus
is composite, the complexity of these systems
increases due to the intricate structure of Z,,, making
it an ideal candidate for exploring both algebraic and
topological properties [3, 4].
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In this context, our study focuses on the group of
units in Z,, the set of elements coprime to n. This
group is crucial in applications such as cryptography
and coding theory, where understanding modular
structures is essential [5]. Quadratic residues are
significant in exploring multiplicative structures in
modular arithmetic, influencing both theoretical and
practical aspects of these fields [6].

We propose a new topological space defined on
U, c Z,, using solution sets of quadratic residue
equations of the form x? = a (mod n), where a is a
quadratic residue modulo n. The topology t, is
defined using a basis derived from these solution
sets, enabling a comprehensive exploration of the
algebraic relationships among solutions. Through
this definition, we provide new insights into the
intersection of algebra and topology within modular
arithmetic. We also analyze the fundamental
properties of t,,, including clopen sets, closure, and
interior operations, to reveal the underlying
algebraic structure. Additionally, we investigate
continuous mappings from the group of units in Z,
to the group of quadratic residues, employing a
quotient topology to explore separation properties.
This approach highlights the distinct topological
behaviors in these spaces, enhancing our
understanding of modular arithmetic through a
topological perspective [7, 8].

2. Preliminaries
In this section, we introduce key theorems and

concepts in number theory, including polynomial
congruences, and important results from modular
arithmetic [9, 10, 11, 12, 13, 14]. These foundational
ideas will help frame the subsequent discussions and
applications related to quadratic residues and their
behavior in modular arithmetic.

Definition 2.1 If m is a positive integer, the Euler's
totient function, denoted ¢(m), represents the
number of positive integers up to m that are
relatively prime to m.

Quadratic residues are essential in determining
whether a quadratic equation has a solution for a
given modulus, and their properties are closely
linked to the distribution of prime numbers and
modular structures.

Definition 2.2 We say that an integer a is a
quadratic residue of m if (a,m) =1 and the
congruence x? = a (mod m) has a solution. If the
congruence x? = a (mod m) has no solution, then
a is called a quadratic nonresidue of m.

This distinction is essential, as knowing if a number
is a quadratic residue reveals potential solutions to
the corresponding quadratic congruence.

To explore the implications of quadratic residues, we
first consider their distribution among the integers.

Theorem 2.1 If p is an odd prime, then there are
exactly (p — 1)/2 quadratic residues of p and (p —
1)/2 quadratic nonresidues of p among the integers
1,2,..,p— 1.

Next, we explore the structure of quadratic residues
in various modular systems, which can differ
significantly based on the modulus used.

Lemma 2.1 The number of quadratic residues in Z,«
is 2k3,

This result emphasizes how the structure of
quadratic residues changes when considering
powers of 2, contrasting with the behavior observed
with odd primes.

Lemma 2.2 The number of quadratic residues in

k-1

- . . pk—p
Z, Where p is an odd prime is ——

The general problem of solving quadratic
congruences modulo a composite number can often
be reduced to solving congruences modulo its prime
power factors.

€1,.€2

Theorem 2.2 Let n=p;'p,?..p,". Then the
number a is a quadratic residue mod n iff a is a
square modulo each prime power divisor pfi of n.

To decide whether a number a is a square modulo n,
it suffices to decide if a is a square modulo the prime
power divisors of n. To do that we must consider
separately the case where the prime is odd.

Theorem 2.3 Let p be an odd prime, and (a,p) = 1.
Then there is a solution of x? = a (mod p®), e > 1,
if and only if there is a solution of x? = a (mod p).

To further explore the nature of solutions to
quadratic congruences, we can turn to the
characteristics of such solutions specifically in the
case of odd primes.

Theorem 2.4 Let p be an odd prime and a an integer
not divisible by p. Then, the congruence x2 =
a (mod p) has either no solutions or exactly two
incongruent solutions modulo p.

In contrast, the case where the modulus is a power of
2 is a bit different.

Theorem 2.5 Suppose a is odd. Then:
a) For k = 1, there is exactly one solution.
b) For k = 2, there are exactly two solutions.
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c) For k=3, if a=1(mod 8), there are four
solutions; otherwise, there are none.

This characterization of solutions helps to
understand how quadratic congruences behave
under different moduli, especially when factoring
integers. For example, Fermat’s factorization
method uses integer representations as differences of
squares, providing an efficient way to factor
numbers. This principle can be extended to other
factoring techniques.

Proposition 2.1 (Basic Factorization Principle) Let
n be a positive integer and let x and y be integers
with x? = y? (mod n) but x = +y (mod n). Then
gcd(x — y,n) is a nontrivial factor of n (that is, the
gcd is not 1 or n).

This factorization principle offers key insights into
the structure of quadratic congruence solutions,
which are crucial in number theory. In quadratic
residue graphs [15], vertices represent quadratic
roots, with edges connecting those whose squares
are congruent modulo n. Each graph component
corresponds to a quadratic residue, providing a
visual representation of the factorization methods
and revealing relationships between residues in
modular arithmetic.

In general topology, concepts like open, closed, and
clopen sets, as well as closure and interior
operations, are fundamental to understanding
topological spaces [16, 17, 18]. For any topological
space (X,t), open sets belong to the topology t,
closed sets are their complements, and clopen sets
are those that are both open and closed. In the
context of Z,, these principles guide the study of
solution sets of quadratic residues, which form a
basis for the topology 7, defined in this paper.
Analyzing clopen sets, closure, and interior within
T, provides insight into the algebraic structures
underlying modular arithmetic.

3. Results

In previous research, particularly in [19], the
topological space defined on the group of integers
modulo a prime number p has been studied,
establishing key properties and behaviors. Drawing
from this foundational work, we now concentrate on
the more complex case of composite numbers n. In
this section, we present our findings on the
topological space t,, defined on U, exploring the
unique characteristics and algebraic relationships
that arise when n is composite.

To investigate the properties of the defined
topological space t,,, it is essential to consider the

various cases arising from the factorization of n.
Specifically, the structure of n as a product of prime
powers can  significantly  influence  the
characteristics of 7,,. Each case whether n is a prime,
a power of a prime, or a product of distinct primes
presents unique topological features and
implications.

Case 1: n = 2%, where k is a positive integer greater
than or equal to 1.

In this case, we explore the structure of the
topological space (U,k, 7,x). A key feature of this
space involves the solutions of the quadratic
congruence x? = a (mod 2¥), which for k > 4,
always has exactly four solutions {x, 2% — x, y, 2% —
y}. The cardinality of the set of quadratic residues,
which is fundamental in defining the space, is
expressed as 273,

The quadratic residues in this setting generate a
graph structure, where each residue is connected to
four elements, leading to a graph represented by
2k=3K,. This graph captures essential information
about the basis B and offers insight into the
properties of the quadratic residue class system
within the topological space (U, T,«).

Proposition 3.1 Let (U, 7,,) be a topological space,
then:

1. If n = 2, then t,, is trivial.
2. If n = 22, then t,, is trivial.
3. Ifn = 23, then 7, trivial.

4. Ifn = 2k where k > 4 is any positive integer,
then 7, has abasis {{x;,n — x;, yi,n — y; )}y

Proof: (1) Based on the definition of the basis, the
topological space (U, t,,) is trivial.

In assertions (2) and (3) the only open sets are
{1,3} € 1,2, and {1,3,5, 7} € t,3, which are U,, and
Ug respectively. Therefore, 7, and g4 are trivial.

(4) Suppose that n = 2k, with a positive integer
k =4, and B is the basis of the topological space
(U, t,). Since for any quadratic residue a € U,,
there are four solutions of the quadratic congruence
x2 = a (mod n). Therefore, every element B; € B
consists of four unit elements {x;,n — x;, y;,n — y;}.
Given that #(U,) =8 and divisible by four, it
follows from Lemma 2.1, that B consists of all open

k-3
sets {{x;,n —x;, yun—y}}-, . W

Proposition 3.2 Let k be any positive integer, and
let (U,k,T,x) be a topological space. For any V €
7, then the set V is a clopen.

Before proceeding with the proof, note that for k <
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3, the topology t,« is trivial, making the proof
straightforward. Therefore, in the case 1, we focus
on k = 4. By definition, the basis elements of the
topology 7,x are of the form B; = {x;2F —
X, Vi, 2% — y;}, where i =1,2,...,2%73, and these
are open sets. If V € U,k is any set that can be
expressed as a union of basis elements, it means that
V is an open set.

We call the solutions of the congruence equation
x? = a (mod n), apart from a given root x;, the co-
solutions of x;, which together form a basis element.
Proof:

To prove that V is closed, we must show that its
complement U,x — V is open. Suppose x; € U,k —
V. Then its additive inverse 2¥ —x; and all co-
solutions do not belong to V. If this were not the
case, V would not be open. Thus, we can find a basis
element B; = {x;, 2% — x;,y;, 2% — y;} contains x;
and its all co-solutions such that B; € U,k — V.
Therefore, for every point x; € U,x — V, we can find
a basis element B; contained in U,x —V, meaning
that U,x — V is open. Consequently, V' is closed. ll

Proposition 3.3 Let A be a subset of U, such that
A = {x;,%;, ..., x.}, Where 1 < r < ¢(25).

1. If there exists an index j, where 1 < j < r, such
that x; € A but 2 — x; € A, then A" = U;; B;,
where B; C A.

2.1f forall 1 <j <r, we have x; € 4 and 2* —
xj & A then A" = ¢.

Proof: (1) By definition, the interior A of a set A is
defined as the largest open set entirely contained
within A. Thus, 4° includes all points x € A for
which there exists an open set V € 7,k such that x €
VcA.

In the topology t,«, each basis element has the form
B; = {x;,2% — x;,v;,2¥ —y;}, where x;2F—
x;, Vi, 2% — y; € U,k for each i. If there exists an
element x; € A but 2k — x; & A, then the smallest
open set B; containing x; cannot be entirely
contained within A due to the absence of 2% — x;.
This implies that x; and its co-solutions cannot be
interior points of A. Consequently, for any x; € A
that is an interior point of A, we have x; € B; c A.
Therefore, the interior of A is givenby A° = Uixj B;.
(2) Suppose that x; € Aand 2 — x; ¢ A forall 1 <
j <r. Then, the basis element B; is open set
containing x;, and cannot be entirely contained in 4,
which implies that x; is not an interior point of A for

allj. Thus, A" = ¢.

Remark 3.1 In the Proposition 3.3:

(1) if for every j, with 1 < j <r, both x; € A and
2k —x; € A, and #(A4) t $(2%), then some of the co-
solutions {yj, 2k — yj} C B; are missing for some ;.
Thus, the basis element, which represents this
solution cannot be contained in A. Consequently, the
interior of A is A — (U; B;), for some j.

(2) If #(A) < 3, then at least one co-solution is
missing from A. This implies that there is no open set
containing any point from A that can be entirely
included within A. Consequently, A" = @..

Example 3.1 In the ring Z ¢, the group of units U;, =
{1,3,57,9,11,13,15}, Let A ={1,3,511,13,15}. The
basis elements in 7,4, are B, = {3,511,13}, B, =
{1,7,9,15}, and 1,4 = {¢, Uz, {3,5,11,13},{1,7,9,15}}.
We observe that B, is the only open set containing
{1, 15}, which is not included in A. Hence, A° = B;.

Proposition 3.4 Let A be any subset of U, such that
A = {x;,%5, ..., x.}, where 1 < r < ¢(2%). Then:

1. If there exists an index j, with 1 < j < r, such

that x; €A but 2% —x; ¢ A, then A’ is:

{U(B,- -} yp2-yea
A=4u{’
UBj yjor2k—y, €A
J

2. If for every j, with 1 < j < r, both x; € A and
2K —x; € A, then

r
j=1

Clarifying before the proof, U; B; denotes the union
of basis elements that include x; for specific indices
J meeting the given condition.

Proof: (1) Suppose that there exists an index j, with
1<j <r, such that x; € A but 2* —x; ¢ A. The
smallest open set B; contains x;, 2k — x;, and the co-
solutions {y;, 2 — ;3.

We examine the accumulation points by considering
the intersections of A with various open sets
excluding certain elements:

¢ yi,2k—y ¢ A
Yj yj €A

-y 2k—y,eA

D; v 2k — yji}cA

An(Bj_{xj})= 2k

Univ Zawia J Nat Sci 2025:1;01-11
http://journals.zu.edu.ly/index.php/UZJINS




Daoub HA.

An (B — {2¥ - x;})

{x;,y;} y; €A
{x]-, Zk — yj} Zk — y] eEA

(95,2 =y} p2k-y}cA
AN (Bj - {J’j})

{x;, 2" —y;} 2k—y €A

{x, 25—y} {y,2"-y}cA
An (B, - {2¥-y;})
X; yi,2k—y ¢ A
{x, v} y; €4
Xj 2k—y,eA
k{xj,yj} DicA

In all cases, 2% — x; is an accumulation point of A.
If neither y; nor 2k — yj isin A, then x; can not be
an accumulation point of A. However, if one element
of the pair {y;, 2% —y;} is in 4, then x;,y;, 2% — x;,
and 2k — y; are all accumulation points of A.
Furthermore, every x; € B; c A is an accumulation
point A', because, A N (B; — {x;}) # ¢. Therefore,
the set of accumulation points A’ is:

U(B,- () v 2oy 4
A=4u{"’
UB]- yjor2k—y, €A
j

(2) Suppose that for all j, with 1 < j < r, we have
that x; € A and 2¥ —x; € A. We determine the
accumulation points by examining the intersections
of A with open sets excluding certain elements:

2.An (B — {2¥ —x;}) # ¢,

3.An (B —{y;}) # ¢,

4.An (B, — {2k —y;}) = ¢.

Since all of these intersections are nonempty, every
basis element B; contributes points to the

accumulation set. Since every x; € B, A is an
accumulation point A’. Thus, the set of accumulation

points A" is:
,
j=1

Proposition 3.5 Let A be any subset of U« such that
A= {x1,%,,..,x.}, where 1 < r < ¢(2%). If there
exists an index j, with 1 < j <, such that x; € A
but 2¥ —x; € A, then A=A U (U; B))

Proof: By definition, the closure A of a set A is the
smallest closed set that contains A. Suppose there
existsan index j suchthat1 < j < r, with x; € A but
2K —x; ¢ A. This indicates that A is not closed, as
the complement of A is not open. To ensure A is
closed, we must extend it by including the basis
elements that contain x; and its co-solutions,
specifically the set U; B; for some j. Consequently,
the closure can be expressed as

A=Au U B
j
Thus, the proof is established. l
Proposition 3.6 Let A be any subset of U, such that
A= {x1,%,,..,x.}, Where 1 < r < ¢(2%). Then:
1. If there exists an index j, with 1 < j < r, such
thatx; € Abut2¥ — x; & A, then b(A) = U; B;.
2. If Ais open, then b(A4) = @.

Proof: (1) Suppose there exists an index j, with 1 <
j <, such that x; € A but 2¥ — x; & A. The basis
element B; = {x;,2" —x;,y;,2¥ —y;} is the
smallest open set containing x;. By definition, the
boundary of a set A consists of all points x; in the
space U,k such that every open set containing x;
intersects both A and its complement U, — A. We
examine the intersections for boundary points as
follows:

X v 2 =y €A
AnB - {x;, v} y; €A
J {xj,zk—y]} Zk—y] EA
{x;,;, 2% — y;} DicA
Zk—xj yj,Zk—yjeEA
_ {2¥ — x;, 3} yj €A
{2k—xj,2k—yj} Zk_yJEA
{Zk—xj,yj,Zk—yj} D] cA

In both cases, the intersection between A and B, as
well as the intersection between U,x — A and B;, is
a non-empty set. Therefore, each B; contributes
points to the boundary of A. Thus, the set of
boundary points is:
b(A) = U; B; for some j.

(2) Now, consider that A is open. In this case, the
basis element B; is entirely contained within A.
Thus, we have that An B; = B; and (U, —A) N
B; = ¢. As a result, no points in B; lie on the
boundary of A, because no open set containing x;
intersects both A and its complement. Therefore, the
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boundary of A is empty. B

Case 2: n = p* where p is an odd prime and k > 2
is a positive integer.

In this case, we explore the structure of the
topological space (U, 7,k). A key aspect of this
space is related to the solutions of the quadratic
congruence x? = a (mod p*), which always has
exactly two solutions. The cardinal number of the set
of quadratic residues, which plays a fundamental
role in defining the space, is given by w.

We define the topological space (U ks Tyie) using a
basis B, consisting of sets of the form {x? =
a (mod p*),a € Upk} = {x,p* —x}, where x€
U,k. The quadratic residues in this setting form a
graph structure, where each residue is connected to
two elements, leading to a graph represented by

k=1, _
P ;p 1)K2_

Proposition 3.7 Let (U ks Tpk) be a topological
space, if V e T,k then I/ is a clopen set.

Proof: In the topological space Uk, Tyk), every
basis element B; = { x;, p* — x; } is an open set. Let
V€T then V is a union of basis elements, which
is an open set. To prove that V is closed, we will
demonstrate that its complement U ,x — V, is open.
Consider any element x; € U« — V. Since x;  V,
its pair p* — x; also does not belong to V. For each
x; € Uy —V, we can construct a basis element
{x;,p* —x;}, which is contained in U —V.
Consequently, U,k =V can be expressed as a union
of basis elements. Confirming that U ,x — V' is open.
Therefore, V is closed. B

Proposition 3.8 Let A be any subset of U,k such that
A ={x,x3,...,x.}, where 1 < r < ¢(n), then:
lLlfx;eAdandp* —x; ¢ Aforsome 1<j<r,
then A" = 4 — (U;{x;}).
2.1f x;€ A andp* —x; € A for all 1<j<r,
then A° = A.
3.1f x; €A andp* —x; ¢ A for all 1<j<r,
then A" = ¢.

Proof: (1) Assume that x; € A and p* — x; & A for
some 1 < j < r. Inthis topology, each basis element
B; contains exactly two-unit elements {x;, p* — x;}.
If x; belongs to the interior A’, then the open set B;
must be entirely contained in A, implying that both
x; and p* — x; are in A. However, since p* — X &
A, the set {xj,pk — x;} cannot be fully contained in

A, contradicting the condition for x; € A’. Therefore,
we conclude that A° = A — (U {x;}).

(2) Assume that for each 1 <j <, both x; € A
and p* — x; € A. This implies that for every element
x; € A, there exists a unique complement p* — X,
and the elements of A can be grouped into pairs of
the form B; = {x;,p* — x;}.

By the definition of the basis in this topology, each
B; contains exactly two elements and forms an open
set entirely contained within A. Thus, every x; € A
is an interior point of A. Since this condition holds
forall x; € 4, it follows that the interior of A is equal
toA. 1l

Proposition 3.9 Let A be any subset of U,k such that
A= {x1,%y,...,x.}, Where 1 < r < ¢(p*). Then:
1.Ifx; € Aandp* —x; ¢ Afor some 1 <j <r,
then A" = 4" U (U {p* — x;}).
2.1f x;€ A andp* —x; €A for all 1<j<r,
then A" = A.
3.1f x; €A andp* —x; ¢ A for all 1 <j<r,
then A’ = Uj_,{p" — x;}.

Proof: (1) Assume that x; € A and p* — x; & A for
some 1 < j < r. In the topology (U, T,k), the set
B; = {x;, p* — x;} is the smallest open set containing
x;. Since p¥ —x; & A, then A n (B; — {p* — x;}) =
{x;} # ¢. It follows that p* — x; is an accumulation
point of A. While x; is not an accumulation point of
A, because of An (B; — {x;}) = ¢. Moreover, all
points in A" are accumulation points of A. Hence,
A =AU (Ufp* — %))

(2) Assume x; € Aandp* —x; e Aforall 1 <j <
7, This implies that B; < A for all 1 < j < r, which
by definition, means that A is an open set.

Since A is open, any accumulation point y can not
be in U,x — A, because for any open set V < U«
containing y, we have An (V — {y}) = @.
Therefore, for each x; in A, the open set B; satisfies
AN (B; — {x;}) # @. This shows that every point in
A can be an accumulation point. Consequently, the
set of accumulation points A’ = A.

(3) Assume x; € Aandp* —x; ¢ Aforall 1 <j <
r. In this case, x; cannot be an accumulation point of
A because, for each open set B; containing x;, we
have A n (B; — {x;}) = 0.

On the other hand, p* — x; is an accumulation point
of 4, since AN (B; — {x;}) = {x;} # @. Thus, the
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set of accumulation point A’ = U7_,{p"* — x;} B

Proposition 3.10 Let A be any subset of U, such
that A = {x;,%,,..,x.}, where 1<r < ¢p((p")
then:
lLlfx;eAdandp* —x; ¢ Aforsome 1<j<r,
2.1f x; €A andp* —x; ¢ A for all 1 <j<r,
then A =AU (U, {p* —x;}).
3.1f x;€A andp* —x; €A for all 1<j<r,
then A=A

Proof: (1) Given A = { x4, x5, ..., X}, assume that
xj €A, and p* —x; ¢ A for some 1 <j<r. By
Proposition 3.9, the set of accumulation points of A
is given by A’ = A" U (U;{p* — x;}). The closure of
A is the union of A and its accumulation points A’.
Therefore, we have:
A=AUA =40 (U;{p* —x}).

(2) Suppose that x; € A and p* — x; ¢ A forall 1 <
j < r. By Proposition 3.9, we have

A=Au (U;l{p" - xj}).

(3) Given that each 1 <j<r, both x; and its
complement p* — x; are included in A4, it follows
that the set B; = {x;, p* —x;} € A, for each j. Thus
A can be expressed as the union of these basis
elements, which form an open set. By Proposition
3.7 we conclude that A is also closed. Therefore, the
closure of 4, isequalto 4,ie, A = A. A

Proposition 3.11 Let A be any subset of U« such
that A = {x;,x,,..,%,}, where 1<r <@
then:
lLlfx;eAdandp* —x; ¢ Aforsome 1<j<r,
then b(4) = U; B;.
2.1f x; €A andp* —x; ¢ A for all 1 <j<r,
then b(A) = Uj=1 B;
3.1f x; €A andp* —x; €A for all 1<j<r,
then b(4) = Q.

Proof: (1) Suppose that x; € A and p* — x; & A for
some 1 < j < r. The smallest open set containing x;
is B;, which satisfies the following:

x; is aboundary point of 4, because A N B; = {x;} #
¢ and (Ux — A) N B; = {p* — x;} # ¢.

Similarly, p* — x; is a boundary point of A.
Consequently, the boundary of A is given by b(A4) =
UjB;.

(2) Suppose that x; € A and p* — x; ¢ A forall 1 <

j <. In this case, x; and p* — x; are boundary
points of A for all j. Because A N B; = {x;} # ¢ and
(U, —A)nB; = {p* — x;} # ¢. Thus,

b(A) = UB,-
j=1

(3) Now, suppose x; € A and p* —x; € A for all
1 < j < r. This implies that A is open, meaning all
points in A are interior points. For any open set B;
containing x;, it follows that A N B; = {x;,p* —
x}#¢ and (Uje—A)NV=g¢. Therefore, no
points of A can be boundary points, and we conclude
that b(A) = 0. 1

Case 3: n=p;'p,? ...p," Where py,p,, .., p, are
distinct odd prime numbers.

In this case, we explore the structure of the
topological space (Uy, ), where n = p;*ps? ... ps7,
with p being an odd prime and r being a positive
integer. The topological space (U,,t,) is defined
using a basis B, which consists of sets of the form
{x2=a (modn) | a€ U,}, where x € U,, and
each set B; contains 2"~ pairs of solutions.

A key aspect of this space is related to the solutions
of the quadratic congruence x? =a (mod n),
which always has exactly 2" solutions. The

cardinality of the set of quadratic residues is given

by %.

In this context, the quadratic residues form a graph
structure, where each residue is connected to 2"

elements, resulting in a graph represented by
p(n)
21”
basis B and helps elucidate the properties of the
quadratic residue class system within the topological

space (U, 1,,).

K,r. This graph provides crucial insight into the

Proposition 3.12 Let n=p/'p;?..p,", where

P1, P2, -, Py @re distinct odd primes, and (U,,, t,,) be
a topological space, if V € t,, then V' is a clopen set.

Proof: In the topological space (U, t,,), every basis
element {x,n—x1,%5,n — Xy, ..., Xpr-1,10 —
X,7-1 } iS an open set. Let V € t,, be any open set.
To show that V is closed, we will prove that its
complement U,, — V, is open.

Consider any element y; € U, — V. Sincey; € V, its
co-solutions also do not belong to V. For each y; €
U,, — V, we can find a basis element B; containing y;
and its co-solutions (elements correspond to
solutions of the quadratic congruence x? =
y? (mod n)). It satisfies V n B; = ¢, since no
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element from B; is in V. Consequently, for every
y; €U, —V there exists a basis element B;
contained within U,, — V, confirming that U,, — V' is
open. Therefore, V is closed. B

Proposition 3.13 Let A be any subset of U,, such that
A ={x,x3, .., x.}, where 1 < r < ¢p(n). If x; €A
andn—x; ¢ A for some 1<j<r, then 4" =
Uixj B;, Where B; c A.

Proof: Assume x; € Aandn — x; ¢ A forsome 1 <
Jj < r. Since each basis element in 7,, contains x; has
the form B; = { x;,n — X1, X2, — X3, voe, Xpr-1,10 —
x,r-1 }. For x; to belong to the interior A4°, the open
set B; that containing x; must be entirely contained
in A, meaning both x; and n — x; must lie within A.
However, since we are given that n —x; & 4, it
follows that B; cannot be fully contained in A, which
means x; is not an interior point of A. Therefore, for
a point x; € A, to be an interior point of A, then all
its co-solutions lie in A. This implies that x; € B; c
A. We conclude that A" = U;; B;. W

Remark 3.2 In Proposition 3.13:

(D) Ifx;eAandn —x; ¢ Aforall 1 <j <r, then
A° = @. Because the basis element B; can not be
contained in A.

@ IfxjeAdandn—x;€Aforall1<j<r, and
2771 } #(A) then A" = U, B;, for each x; € B; € A.
Proposition 3.14 Let A be any subset of U,, such that
A ={x;,%,..,x.}, where 1 < r < ¢p(n). If x; €A
andn —x; ¢ Aforsome 1 < j <r, then

J
U B; #(AnB;)>1
j

Proof: Assume x; € Aandn — x; ¢ A forsome 1 <
j <r. In the topology (U,,t,), the basis element
B; = {x,n =X, %, — Xy, oo, Xor—1,0 — Xpr-1 }

is the smallest open set containing x;. Since A N
(Bj - {n - xj}) = {x;} # ¢, it follows that n — x;
must be an accumulation point of A. If none of the
co-solutions of x; are in A then x; cannot be an

A =4A"vU

accumulation point of 4, because 4 n (B; — {x;}) =
¢. As usual, each x; € A" is an accumulation point of
A. Thus, we have 4’ = A" u (U;(B; — {x;})).

On the other hand, if some co-solutions of x; are in
A, then x; can be an accumulation point of A because

An (B; —{x;}) # ¢. In this case, we have A’ =
Au(U;B). |

Proposition 3.15 Let A be any subset of U,, such that
A ={x;,X3, ..., x.}, Where 1 < r < ¢p(n). If x; €A
andn —x; € A for some 1 <j <, then b(4) =
U; B;.
Proof: Suppose that x; € Aand n — x; & A for some
1 < j < r. The smallest open set containing x; is B;.
Within this open set, consider any element y € B;,
We observe the following:

e AN B; # ¢, because of x; € AN B;.

e Similarly, (U, —A)nNB; # ¢, because, n—

x; € (U, —A) N B;.

These observations imply that B; contains points
from both A and U,, — A. As a result, every y € B;
satisfies the condition of being a boundary point of
A. Since this holds for all such basis elements, the
boundary of A is given by b(4) = U;B;. &

Proposition 3.16 Let A be any subset of U,, such that
A ={x,%3, ..., x.}, Where 1 < r < ¢p(n). If x; €A
andn —x; ¢ A for some 1 <j <r, then A=AU
(U B))-
Proof: Given A = { x1, x5, ..., x; }, assume that x; €
A,andn — x; & A forsome 1 < j < r. Consider
the open set B; containing x;.
e If A n B; = {x;}, then by Proposition 3.14, the set
of accumulation points of A is given by A’ =
A" v (Us(B; - {x}))-
e Otherwise, if the intersection A N B; contains
more elements, then the set of accumulation
points becomes A’ = A" u (U; B;).

The closure of A is the union of A and its
accumulation points A'. Since x; € A, it follows that:
A=4AuU(U;B;). 1
Case 4:n = 2*p[*ps? ...p.", where p;, p,, ..., p, are

distinct odd primes and k is any positive integer.

In this case, we examine the structure of the
topological space (U, t,), defined for n=
2kpiips? .. pfT, with p; being distinct odd primes,
and kandr are positive integers. The topology
(U,, T,) utilizes a basis B, consisting of sets of the
form {x? = a (modn) | a € U,}, where x € U,.

The cardinality of each base element B is influenced
by the positive integer k as follows:

e |Ifk=0,0r1,then #(B) = 2.
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o Ifk =2, then #(B) = 2"*1,
o Ifk >3, then #(B) = 2"*2.

A fundamental aspect of this topological space is the
solutions to the quadratic congruence x? =
a (mod n), with number of solutions depending on
the value of k. Consequently, the cardinality of the
set of quadratic residues varies accordingly.

In this context, the quadratic residues form a graph
structure that provides valuable insights into the
organization of the basis B and reveals key
properties of the quadratic residue classes within the
topological space.

To analyze the properties of the topological space
(U, T,), itis essential to consider how the variation
in the integer k influences the results. Specifically,
for k=0 or k =1, the outcomes are consistent
with those observed in cases where n=
piipy? ... by When k = 2, the number of solutions
increases by two, while the propositions can be
proven similarly. For k > 3, the number of solutions
increases by an additional two solutions, where the
propositions and proofs remain applicable in the
same manner.

For any composite number n, the topological space
(U,, 1) defined by the basis B satisfies the
following:

1. The topological space (U, 7,,) is not T, space.

To show that, consider the points x; and n — x; in
U,. The only open set that contains both points is
By ={x;,n—x;, x3,n— %3, ..., x;,n —
Xj, ..., X, 1 — X, } fOr some positive integer r, where
x? = x7 (modn) for all x;,x; €B;. Therefore,
there are no open sets that can contain one of these
points while excluding the other. Thus, we conclude
that t,, is not T,.

2.The  topological space (U, t,) s

disconnected space.

To determine that, consider the open sets:

V=B ={x;,n— x4, X, — Xg, eee, Xp, N — X}

w=| |B
i#1

Since x; is distinct for each 1 < i < #(U,,) then V
and W are disjoint; thatisV n W = @. Therefore, ,,
is disconnected.

3. The topological space (U,,7,) is a compact

space.

To show that (U,,, 7,,) is a compact space, we verify
that every open cover of U,, has a finite subcover.

Since U,, is a finite set by definition, any open cover
of U,, must also consist of a finite collection of basis
elements that fully cover U,,. Therefore, it is always
possible to select a finite subcollection of these open
sets to cover U,, confirming that (U,, 7,,) is indeed
compact.
4. The topological space (U,,T,) is a Lindeldf
space.

Since (U, t,) is finite, every open cover trivially
has a countable subcover, confirming that (U, t,,) is
indeed Lindelof.
5. The topological space (U,,t,) is a regular
space.

To show that (U,,t,) is a regular space, consider
any closed set F = B; & U, where B; is open and
closed (clopen) and disjoint from all other basis
elements. Letx € V = U, — F = U4 B;.

Since B; is clopen and x € V, we can construct
disjoint open sets U and V such that F < B; = U and
x € V. This guarantees that for any closed set and a
point outside it, we can find disjoint open
neighborhoods, confirming that (U,,, 7,,) is a regular
space.

To further explore the topological space (U,,, t,,), we
define a related space based on the set of quadratic
residues modulo n. By assigning this set with a
discrete topology, we gain a finer understanding of
the structure of quadratic residues within (U,,, T,,).

Definition 3.2 Let Q,, = {q4, g2, ---, g5} be the set of
all quadratic residues in U, and P(Q,) be the
power set of Q,,, then 7, = P(Q,,) defines a topology
on Q,.
The topology 7, is a discrete topology on the group
of quadratic residues modulo a composite n. In this
topology, every subset of Q,, is an open set. This
discrete structure offers a highly detailed
perspective, enabling precise analysis of each
element within the group. While both 7, and 7,, are
topologies associated with the composite number n
and involve modular arithmetic, they differ in
significant ways. They are defined on distinct sets,
have different bases, and generate unique classes of
open sets.
Each basis element B; € B in 1, corresponds to a
quadratic residue a € Q,,. This relationship allows
us to define a function between the topological
spaces (Up, T,) and (Q,, 7o) as follows:

fx) =x2 x€eU,.

The function f maps roots of the quadratic
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polynomial x2 =a (modn) to the quadratic
residue a € Q,,, which implies that each basis
element B; in T, is mapped to a corresponding
quadratic residue a in Q,,.

Example 32 Let n=30 then U;,=
{1,7,11,13,17,19, 23,29}, Q30 = {1,19} and
Tg = {0, Q30, {1}, {19}}
We have only two element bases
B; = {1,11,19,29}, B, = {7,13,17,23}

SO

T30 = {@, Uso, {1,11,19,29},{7,13,17,23}},
and f: (Uzp, T30) — (Q30,Tg) Will be as
f)=1f(7)=19,f(11) =1,f(13) =19,
f(17) =19,f(19) = 1,£(23) = 19,f(29) = 1.
Therefore, we have B; » {1}, B, » {19}, which
correspond to the basis of the topology 7, and 7,
respectively.
The function f: U, — Q,, establishes a topological
connection between these spaces. As shown in
Example 2.2, this mapping preserves key structural
properties, effectively connecting the topologies of
U, and Q,. We now analyze the continuity of f and
explore its impact on the topological structures of
both U, and Q,, starting with the following
proposition.

Proposition 3.17 The function f:(U,,t,) —
(Qn, 7o) is continuous.

Proof: Define f: U, » Q, by f(x) = x? forx €
U,, where @Q, consists of all quadratic residues
modulo n. To establish continuity, we show that the
preimage of every open set in Q,,is an open setin U,,.
Since 7, is a discrete topology, every subset of Q,, is
clopen. LetV = f(U) € Q,, bean opensetin @, for
some UcU, The set U={x€eU,:x?€V}
contains all elements in U,, whose squares are in V.
For each a € V, the set { x € U,: x? = amod(n)}
corresponds to a basis element B € B. Thus, U =
f~1(V) can be expressed as a union of these basis
elements, which are open in U,. Therefore, f is
continuous. l

Since f is continuous and every open set in both
topological spaces (U,,7,) and (Q,,tq) is also
closed, we arrive at the following.

Corollary 3.1 The function f: (U, t,) = (Qn, Tg)
is open.

Corollary 3.2 The function f: (U, 7,) = (Qn, Tg)
is closed.

Remark 3.3 For any composite number n, the
topological space (Qy, 7o) is To, Ty, Ty, T3, and T,
space.

In examining the topological spaces on the group of
units modulo a composite number n, we observe that
(U, t,,) lacks certain separation properties, as it is
neither Ty, Ty, nor T, (Hausdorff). In contrast,
(@n, 7o), defined on the group of quadratic residues
modulo n, satisfies all three separation properties.
This distinction is critical for the function
f: (Up, 1) = (Qn,7q), Which is continuous, open,
and closed. While f ensures that the preimage of
open sets in @,, remains open in U, the open and
closed nature of f allows it to preserve separation
properties in the range even if they are absent in the
domain. This interplay emphasizes how f can
maintain a stronger topological structure in its range,
independent of the limitations in U,,.

To define a quotient topology on U, we start by
establishing an equivalence relation on U, allowing
us to partition U,, into equivalence classes that will
form the basis for this topology.

Define an equivalence relation ~ on U,, by setting
x ~ yifand only if x and y belong to the same basis
element B, which occurs if x? = y? (mod n). This
relation groups elements in U,, that share equivalent
squares. The equivalence class of an element x under
this relation, denoted by [x], is defined as [x] = {y €
Up:x? = y? (mod n)}.

We then define the quotient topology on the set
U, / ~ by introducing the quotient map q: U, —
U, / ~, which maps each element x € U, to its
equivalence class [x]. The quotient topology on
U, / ~ is the finest topology making g continuous,
meaning that a subset V € U, / ~ is open in 7, if
and only if g~1(V) is open in U,, under the original
topology 7,,.

Since U, is clopen in its original topology, each
equivalence class retains this property in the quotient
topology. Thus, the quotient topology on U,
provides a structure where open sets are determined
by the preimages of open sets in U,,, allowing us to
study U,, while preserving the relationships between
elements within their equivalence classes.

Remark 3.4 The quotient topology on U, / ~,
defined by the equivalence relation x ~y &
(x%2 = y? (mod n)), is naturally isomorphic to
the discrete topology on Q,. Thus, @, is the
quotient space of U,, under this relation, inheriting
a discrete topology from the quotient structure. The
map f(x) = x? acts as a quotient map, and this
discrete topology on @,, reflects its nature as the
quotient space U,, / ~.
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4. Conclusion

In this work, we explore a topological space defined
on the group of units modulo a composite number n
using solutions to quadratic residue equations. The
defined topology using sets formed by these
solutions provides a detailed exploration of the
algebraic relationships among solutions. Some
properties were examined, such as clopen sets,
closure, interior, limit points, and the behavior of
continuous functions. Some results highlight
differences in the separation axioms of these spaces
through the analysis of the quadratic residues and
quotient topologies.
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