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ABSTRACT

In this paper, we are concerned with a model arising from biology, which is a coupled system of chemotaxis
equations and viscous compressible fluid equations through transport and external forcing. The local existence of
solutions to the Cauchy problem is investigated under certain conditions. Precisely, for an attraction-repulsion
chemotaxis model system over three space dimensions, we obtain local existence and uniqueness of convergence
on classical solutions near constant states. We prove local existence of unique solutions in three dimensions by
using energy estimates.
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mathematical model to describe the phenomenon of
chemotaxis [1,2]. Since these interesting works of

1. Introduction
Chemotaxis is the process of directed movement of

organisms toward a higher or lower concentration of a
particular chemical. It plays a crucial role in many
biological phenomena, such as immune system
response, embryonic development, tumor growth,
population dynamics, and gravitational collapse. In
1970, Keller and Segel proposed a famous

Keller and Segel, many variants of chemotaxis models
have been proposed and their dynamics have been
intensively studied, mainly in homogeneous
environments [3-9] and [10-15]. It is based on the HV
a priori estimate with time-weighted functions by the
energy method [16-19]. In particular, we refer to
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survey papers [20,21]. In fact, the underlying
environments of many biological systems undergo
various spatial and temporal changes. Studying
chemotaxis models in heterogeneous environments
has biological and mathematical interest. Huang et al.
[22] obtained the initial-boundary value problem of a
chemotaxis system with singular sensitivity and
logistic. In addition, they studied the local existence of
solutions under different conditions. Xiao and Li [23]
established the existence of a weak solutions to the
static problem, via the potential. Matsumura and
Nishida [24] obtained the initial-value problem for
equations of motion of viscous and heat conductive
gases in three dimensions, and they obtained the
existence of global solutions in H® with a method
based on iteration and the energy method. However,
important  dynamical questions, including the
uniqueness and global stability of fully positive
solutions, remain open for models of chemotaxis
systems. In this paper, we study a mathematical model
for the motion of swimming bacteria, eukaryotes in
compressible viscous fluid in R3given by

on+V-(nu) =6An +n(n, —n)

Vp(n)

J,u+u.Vu + =Vh, —Vh, + lu

0:hy = Ahy — kihy + kyn

0:hy, = Ahy — ksh, + kyn,
where n(x, t), u(x, t), hy (x, t),h,(x, t), p(n),
for t > 0,x € R3, are the density of cells, velocity of
cells, chemoattractant concentration, chemorepellent
concentration, and the pressure of the fluid . A
positive constant A is the coefficient of the
damping. The initial data is given by
(M w,hy, hy)leo = (Mo, Ug,hyg . hag)(X), x €
R3,
Where it is supposed to hold
that (no, Ug, hig ,hzlo)(x) — (noo,O v hy o ,hz,m),
as |x| - oo.
The aim of this paper is to study the local existence
and uniqueness of the positive solutions of the
chemotaxis model with logistic sources. The main
goal of this paper is to establish the local existence of
smooth solutions in three dimensions around a
constant state (Ne, , 0, Ay o0, Ry co)-
The main result of this paper is stated as follows:
Theorem 1.1. Let N = 4 be an integer and U(t) =
[n,u,hy, h,] be a smooth solution to the Cauchy
problem of the chemotaxis system (1.1) with initial
data Uy = [ng , ug, Ry, hapo]- Suppose that there is a
sufficiently small constant 6, such that

1ol < &,

(1.1)

then the Cauchy problem (1.1) - (1.2) admits a unique
classical solution U(t) locally in time which satisfies
(N = TN,y — hy oo By — hyoo)(2) €
C([0,0); HY (R*)) n €*([0, %0); HY~2(R?)),
u € C([0,%0); HY(R®)) n C'([0, 00); HY~'(R?)).
(1.3)
We present some assumptions which will be used in
the rest of the paper; that is
ng =20,u; =0, hyg=0,hy0=0.
For an integrable function f: R® — R, let us denote the
space

X(@0,7T) =

(n =T, by — Ay hy — hyoo) €

c([o,T]; HN(R*)) n €' ([0, T]; HN72(R?),

u € C ([0, T]; HV(R®) n €*(0,T); HN"1(R?))

This paper is organized as follows. In section 2, we
introduce some notation and definitions in this paper.
In section 3, we prove the local existence and
uniqueness of the solutions.

2. Notation and preliminaries.

Throughout this paper, we introduce some
notation for later use. Let Q be a bounded domain in
R3. ¢ denotes a general constant, c; where i = 1,2,
denotes some positive (generally small) constant,
which may take different values in different places.
We also set 0 = (95}, dy:, dy. ) for a multi-index
a = (ag,ay az).

Definition 2.1
Ifu = (P,Q,R) is a vector field in R3and P, Q, and
R all exist, then the divergence of u is defined by

. _dP , dQ , dR
dlvu=PX+Qy+RZ—E+E s

For simplicity, the divergence of u can be written as
the dot product
divu=V.u.
Definition 2.2
A function of class €*(Q) is a function of

smoothness at least k; that is, a function of class
Cc*(Q) is a function that has a kth derivative that is
continuous in Q:
ck@Q)={f:Q->R|fisk—
times continuously differentiable }
A function of class C*(Q) or C*(Q)-function is an
infinitely differentiable function; that is, a function
that has derivatives of all orders in Q:

C*(Q)

= {f:Q - R| f is infinitely differentiable }-
Definition 2.3
For 1 <p < oo, the space LP(Q1) consists of the
Lebesgue measurable functions f: Q — R such that
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flf(x)lpdx < o,
Q

and L*(Q ) consists of the essentially bounded
function.

These spaces are Banach spaces with respect to the
norms

’
1Nl = (f If ClP dx) Mflleo = suplf
Q

XEQ
where sup denotes the essential supremum,
sup|f] =inf (M =0: |f]

xX€EQ
< M almost evrywhere in Q}.

Definition 2.4

The Sobolev space WNP(U) consists of all
summable functions u: U — R such that for each
multi-index a with |a| < k, D%u exists in the weak
sense and belongs to LP (U).
Definition 2.5
If u € WNP(U), we define its norm to be

”u”WN.P(U)

)
(Zle“uIﬂix) 1<p<o
= lal<k °U

ess sup|D%u| p = o,
klalsk

The Sobolev space WN2(IR3) is denoted as H". When

N = 0, the norms in the space L?(R%) are denoted by

[IIIl. We will denote |||y is the HN norm.

Cauchy’s inequality with €

Let a, b are any real numbers. Then
2

abSEa2+4—£ a>0,b>0e>0.

Cauchy-schwarz inequality
lx+yl < lIxllyl  (x,y € R").
Gronwall's inequality (differential form)
Let f(t) be a nonnegative, absolutely continuous
function [0,T] , which satisfies the differential
inequality

fl®) <gOf© + k),
where g(t) and k(t), are nonnegative, summable
functions on [0, T]. Then,

£ < e 998 [£(0) + f tk(s)ds]
foral0 <t <T.

3. Existence of local solutions
Let U(t) = [n,u, hy, h,] be a smooth solution to the

Cauchy problem of the chemotaxis system (1.1) with
initial data Uy = [ng, ug, hy o , hay). TO prove the local
existence of solutions to the Cauchy problem (1.1)
when initial data is a small, smooth perturbation near

the steady-state (ne,,0 ,Rye,haw), let us take
changes of variables

n(x,t) = o(x,t) + ne, by = v+ hyo
and h,z =w+ h’Z,OO'
So, the Cauchy problem (1.1) is reformulated as

0:0 + ne,V-u—38A0 +n,o
= —u.Vo —¢.Vu — ¢?

p'(0+ ny)
Ju—Au=-uVu———Vo+Vv
0+ Ny
- Vw
0;v=Av—-kv+k,o (3.1)

ow = Aw — ksw + k0,

with initial data
(0,U,v,W)|i=g = (a9, Ug, Vo, Wy) — (0,0,0,0) as
[x|] = 3.2)
Where o0y =ng —ne, Vo =hyo— hieandwy =

hyo — hye, which satisfies the compatibility
condition  kyne, —kihi =0 and  Kaleo —
k3h2,°o = 0

Now, we construct a solution sequence

(n/, W, hy/, hzj)j20 by solving iteratively the Cauchy
problem for the following
0,07 + n V-t — §AcTT + ngoltt =
—V(oi*t ) — gf®
p'(07 +ny)
ol +ng
+ Vpitt —ywitt
0/t = A/t — kvt + ko) (3.3)
AW/t = AW/t — kawItt + k0!
with
(O.j+1'uj+1'vj+1'wj+1)|t=o = (04, Ug, Vo, Wy) =
(0,0,0,0) as|x| — oo, (3.4)
for j > 0. In what follows, let us write A/ =
(o, w,v/,w)) and A, = (04, Ug, Vo, W,), Where
A° =(0, 0, 0, 0) for simplicity.
Now, we can start the following Lemma:
Lemma 3.1 There are constants T; >0, g, >0,
B > 0 such that if the initial data A,€ HY (R?) and
l4olly < &, then for each j >0, A/ € C([0, T, ;
HY(R?)) is well defined and
su |[A7@)|, < B (3.5)

0<t<Ty
Moreover, (Af)j20 is a Cauchy sequence in the
Banach space C ([0, T;1; H" (R3)), which converges to

0wt — At = —u v — Vo/*t
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the solution A = ( o, u, v,w) of the Cauchy problem
(3.1) - (3.2), and satisfies

Sup ”A(t)”N <B
0=<t<T;

Finally, the Cauchy problem (3.1) -(3.2) admits at
most one solution in C ([0, T, ]; HY (R®)), which
satisfies (3.6).

Proof. We take A° = (0,0,0,0). Then, we use that to
solve the equations for A. The first, third, and fourth
equations are the second order parabolic equations.
The second equation is the wave equation. We obtain
ol(x,t),vi(x,t),wl(x,t), and ul(x,t) in this order.
Similarly, we define (¢/, v/, w’, /) iteratively. Now,
we prove the existence and uniqueness of solutions in
the space C([0,T,]; HN(R®)) , where T, >0, is
suitably small. The proof is divided into four steps as
follows.

First step. We show the uniform boundedness of the
sequence of functions under our construction by
energy estimates. We use induction to prove (3.5). We
observe the case j = 0 by the assumption 4° =
(0,0,0,0). Suppose that it is true for j = 0 with B small
enough. To prove for j + 1, we need some energy
estimates for A/*1.

Applying ¢ to the first equation of (3.3), multiplying
itby %¢/*1, and integrating in x, we get

(3.6)

, - : :
0% 7*10% /! dx + ne, | 0%0/*19% I dx
R R

—6[ %I+l geAgI+1dy
]R3

0%gI+19%v. witldx
]R3

—f 0%a It 99V (g ul)dx
R3

= TNy

8%gI*1 9%q7% dx.
]R3
It follows that

Zdtf |aa ]+1| dx+noof |aa0_]+1| dx

—6 | 0% I*19%Agit dx =
]R3

—ng, | 0%7*19%V - witldx
]R3

- f %I 192 v (g/*t ul)dx
R3

+8 | 0%VgIi*192vgi*t dx
]R?’

= —noof 0%V t19% i+l gy
R3
+f 0°Vo/*19% (u/ - o/ V)dx
]R?’

0%c/19% g7%dx .
R3
The right-hand side of the previous equation is
bounded by

n , ., ., . .

> l*H  ve |, + ellwll llo?* ], I9e ]I,
+clloll, e I o,

Then, we obtain

o1} + nallo [, + 8llver [ <

= oo+ + 2

N2 . 2 ; 2

el [l wllo ™I + cllva I

+ellol |l + ol - 3
Applying 0% to the second equation of (3.3),
multiplying it by 0%u’/*'and then integrating in x, we
have

o [ (@MW) 2dx — A [ (07Ut 2dx +

sucllo

%fw A% utt 9%Ve/tdx =
— Joa 0%ut 0% (WV - w) dx —
j+1 P/ (0/+n0)  p'(neo) j+1
Sz 0°W 6"‘( e )Va’ dx
+fR36“uj+10“ Vitldy —
Jop 0“W 10 Vwit dx.
Then, after using integration by parts, taking the
summation over |a| < N, and using the Cauchy
inequality, we get
w1 + Al
p' (o) I
2ng,

sl

<

i P’ (M) ivqn2
VUJ+1||N +2_:”u1+1”N
2 . 2 02
+ el I + el Il
+ello/ [ 21, + cllvor =2
el + v
+ cfvwi*t|2. (3.8)
Similarly, for the estimate v and w, we have

1d
S 2 el + v

0%07*19% g/%dx.
" <clo/I v, 39
By using integration by parts, one has 1d
L S W + el + v
8 . <l Iw . 310)
Univ Zawia J Nat Sci 2024:1;33-40 36
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We combine the equations (3.7) -(3.10) to get

5 (I + s + o2 2 + w2 )
rer (o2 +
o+ w2
+ a7 + 7|
+low) < el
[

+ cllod, il o

w2 + o

2
N

+[lw .

Thus, after integrating with respect to t, we get

4 @O + e, f:”dj“,uj“,vj“,wj“”]zvds
vey [Vl 00w s
s clat@lly
vef N2 ds

v NI 0w, v w3
whigh from the inductive assumption implies
lar @l +
o f0t||aj+1,uj+1, vj“,wj“”i]ds +
c, fotV- |oi*1, vit, Wj+1||12VdS
< ce? + c¢B?T; + cB? ft”aj“,uf“,vj“,wj“”i].
0

Next, taking the small constants €, > 0, T; >0and M
>0for0 <t <T;. Then we have

t
||Aj+1(t)”12v +C1f ||O.j+1’uj+1’vj+1’Wj+1”12VdS
0

t
+czf v||af+1,vf+1,wf+1||fvds < B% (3.12)
0

From this, we deduce that (3.5) holds for j+ 1 and 0 <
t < T;. Hence, (3.5) is proved for all j> 0.

t
< f |l4i@))|[’.do
St : 2 : : : : 2
+e f A+ [ O] o+, W, witt, v+ do
S
t
+ CJ. V-|oit, vj“,wj””IZVdG < cB?*(t—3s)
S

t
+c(B? + 1) f ||0j+1,uj+1,vj+1,wj“”]zvde
S

+c [V [lo7*t, vt witt|| ds, (3.13)

forany 0 <s <t <T;. The time integral on the
right-hand side from the above inequality is bounded
by (3.12). Then, we conclude that E(A/*1(t)) is
continuous in t for each j = 0. Thus, we claim that

||Af(t)||12Vis continuous in time for each j > 1.

Third step, we prove that the sequence (Af)j20 is a
Cauchy sequence in the Banach space C ([0, T;1];
HY (R?)), which converges to the solution A =
(o,u, v,w) of the Cauchy problem (3.2) - (3.3), and
satisfies

sup 1Ay < B.

0<t<T,
Subtract the j-th equations from the (j + 1)-th
equations. For simplicity, we denote &g’ =g/** —
g’. We have the following equations for 8o/, su/,
v/ and sw/ :
0,607 + n,8a7/tt — NS/t
= —n V- outt —uwv-§gi*t — suiv-of —
—alV 8w — 86V -uw + (67 + a/ )50’
00wt + Adw Tt = -V Sw — S V- u Tt
+Vsvitt —vewitt
Vp(o/ +ny) Vp(o/™t +ny)
ol +n, oI l+ng,
0,6V = ASv/ T — k, 5V + k, S0/
06wt = AdwItt — kydw/tt + k, 8o
(3.14)
The estimate for §o/** is

sacloo i mallsar* [ +elvoor ||,

< c||6uj+1||lzv + c||601'+1||lzv

+ el llsa* ], [[voo2]]

N
For the second step, we show that ||A1'+1(t)||12V is +cl|a’[| NI llow/|l,,
continuous in time for each j > 0. For simplicity, let +clla/|| Ve [l6w/]l,
us define the equivalent energy function +cl[ | 8a|| JI5a7
j+1 j+1]|? j+1]|2 j+1]|? N N N
E(471©) = o7, + [l + [l +cllool| [l .
+ ||wf+1||il. It follows that
Similarly, to how we proved (3.12), we have %%||6o—f+1||12v+c||6af“||lzv +c||V<Saj+1||[2V <
. . td . i i i
A @)~ B )| = || 45 BT @) do cllsw [, + cllsa* ||, + cllsw]]
N
Univ Zawia J Nat Sci 2024:1;33-40 37
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+ el llsar 2, + ello Il llsar I,

+ello I} 1o 2|7 + cllw || oo+ I}

+ c||8af||lzv +c||6af+1||12V. (3.15)
The estimate for Su/*tis

S o2 + alsw

2
< cfl|], [l6w ||, Nlsw/ |
+cllsu* || Ivsv |,
+cl|lsw | [[vsw ]|,

+ c||6uf+1||12v||V60f||12v.
Then we have
22 |lsw |7 +all st
2
< c|lw|l% Jlsw | + llsw||}, +
+c||V517j+1||12V + c||V6wf+1||12V +
cl|lvsal|’. (3.16)

In a similar way as above, we estimate 6v’/*'and
6w1'+1as follows:
L owr s + V8L + kv <
c||6a’||N +cllov*? (3.17)
and
Ll 2 + ([Sw 2 + ks low | <
c||5af||N + c||5w1+1||N. (3.18)

Combine equations (4.15) - (4.18) to get
1d

2az
Hlow* [+ ex (|50 + low [ +

lov 2|17, + low/ 17 ) + . (98072 +

[vsvr 2|2 + [vow 1|2 ) < ¢ (|lsor*|" +
. 2 . 2 . 2

llsw*2 + llsvr 17 + low *2]|7) +

2 12
c (lso/II2 + low|2).

Using Gronwall's inequality, we obtain

Zdt

|57 21, + llsw 1, + v+

sup (1607 2[L + [low 2|1+ [lov/ [+ flaw?* )

0<t<T,

t
< lyeds f 647 ()| ds
0

t
4 eloeas f 641 )] ds

m
(A7 =A%),
=1
in the same space C ([0, T;]; HY (R3)) and satisfies
Sup 11m mf”A]” < B.

ostst /™

A=A+ lim

m-—oo

Sup ”A ”N
0<t<Ty

For the fourth step, we show that the Cauchy problem
(3.2) -(3.3) has a unique solution (o,u,v,w) in
C([0,T,]; HY (R?)). Suppose that A4,A are two
solutions in C([0, T;] ; H" (R3)) which satisfy (3.2).

Let & =o0,(x1t)—oy(xt) |, i =u(xt)—
u,(x,t) , T=v(xt)—vy(x,t) , and W=
wy (x, t) — wy(x, t).

This solves

0,6 + NV - il +10,6 — 6AF = GV - uy
—ﬂV * 0-2 - (0-1 + 0-2)5
P'(no)
V@i — WY uy + VP + Vi — iV, —
(P (0'1+noo) _p (0'2+noo))v o,

at +Au+ V-6 =

01+No O+ N
P (0-1 +noo) P (noo) ~
- W&
01 + Ny Neo

0, D=AV—kT+k, 6

0, W = AW — ks W + k,6. (3.20)
Multiplying & to both sides of the first equation of
(3.20) and integrating over R3, we have

Jos 0 0:6dx + Ny, (s GV lidx + ng, [5G Fdx —
8 [os GAGdx= [ 26 GV - uydx —
Jos 0 (01 + 0,)ddx.

Using integration by parts and the Cauchy-Schwarz

inequality, we get

Ja @ UV - 0pdx —

1d
2 191 + Pl 51991 <

=2 ||V612 + =22 a7
+ C”V Uy || fR3|5|2dx +
cllVazll e (1617 +T@?)dx +
(@)l [psl617dx. (3.21)
We establish the energy estimates for # . By
multiplying % to both sides of the second equation of
(3.20) and integrating in x, we obtain
Joa W0 tdx+A [ Titidx = — [ o T (AV - u;)dx

< cTye™ g [647]7. (319) — foa @ (uoV - @Wdx + [, A VDdx — [, & Viwdx
- ost=Tu . _ (P'(01 + 1) p'(0; +ne)
We take T;> 0 sufficiently small, then we find that —J- i ( — ) Vo,dx
(A7) ;50 is a Cauchy sequence in the Banach space R o1t M 02+ Mer
C ([0, T,]; HN(R?)). Thus, the limit function
Univ Zawia J Nat Sci 2024:1;33-40 38
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'(neo) (01 + Neo
_ P fﬁV&dx+f ﬁ(—p(1 )
noo ]R3 ]R3 0-1 + nw

_P'(n)
By using integration by parts and the Cauchy-
Schwarz inequality, we have

YWédx.

Sl + Al <
el -l =l
+ellV wll =l + vl
+ cll@ll? + cllViwll%
e~ (I + 1917)

( ) (1l + 1val52)

+ ||01||L°°(||u||Lz +IV&l%2).
Since L norms of o, uf, v, wi, where i = 1, 2 are
bounded we have

+

——Ilull 2+ ¢ |lall7

~112 ~ 112
T < c|lVPll2 + cl[V]l ;2

+cllVéllZ + cllgllz. (3.22)
We have a similar way to estimate ¥ and w as follows:

151172 + 1991172 + Ky 171172

EE
<k,(IBl1Z2 + 1I611%)  (4.23)
~ 112 ~112 ~112
¥ 1Wl72 + IV Il2 + ksl
< k(W22 + 11611%) . (3:24)

Taking the Iinear combination of all estimates, we get
vT (IIaIILz + 1@l + 1707 + Iwll7)
+ e (181172 + N1l + 1511
+1wll7)
+ ¢ ((IV6115 + IVW 72
+ Vo ll72)
< c(l61172 + @l + 11907
+1IwllZ).  (3.25)
Applying Gronwall’s inequality to the above
inequality, one has
sup (NGNZ + 11Tz + 151172 + IWI72) <
0<t<Ty
el @ (GO)I% + 12O I1% + IFO)II% +
W (O 7)-
Since the initial data of (&, @, ¥,w) are all zero for
T >0, that implies the uniqueness of the local solution.

4. Conclusion
In this paper, we prove the existence of local solutions

for an attraction-repulsion chemotaxis fluid model
with logistic sources in three dimensions. We show the
existence of local solutions by the energy method. We
divided the proof into four steps, using integral by

parts, Cauchy —Schwarz inequality, and Gronwall's
inequality to prove these steps.
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