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ABSTRACT

Numerical simulations of compressible two-component flows with a general equation of state
(EOS), written in the form of the Mie-Grineisen EOS, have been conducted using the diffuse
interface method on a structured mesh. The unsteady and inviscid one-dimensional six-
equation model of Kapila is employed to describe compressible two-component flows. The
model is hyperbolic and non-conservative. The solution of the hyperbolic equations, including
the non-conservative equation for the volume fraction evolution, is obtained using an extended
Harten-Lax-Leer (HLL) approximate Riemann solver. A general formulation for various EOSs
is proposed to enable simulations of a wide range of applications. In which the two constituents
are either governed by the same EOS or different types of EOS. In this model, both fluids have
the same velocity, but each fluid has its own pressure. Therefore, the pressure relaxation
process is performed instantaneously to drive both constituents' pressures towards equilibrium.
Several computational test problems were conducted in one and two dimensions to show the
ability of the numerical method to simulate such problems. The computed results are presented
without introducing spurious pressure oscillations in the method.

Keywords: Compressible multiphase flow, equation of state, shock wave, Godunov’s method,
approximate Riemann solver.
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1. Introduction

Many processes and systems involve multi-component flows. For example, gas mixing for
combustion, shock bubble interaction, water under pressure used to cool the nuclear reactor core,
coolant spray in cooling towers, and cavitation, which may take place on pump impellers, turbine
blades, or marine propellers. Although compressible multi-component flows have been widely
investigated, the numerical technique enabling the capture of interfaces using a general equation of
state (EOS) remains a challenging problem. The ability of a numerical method to deal with various
EOS enables the study of a wide range of applications.

To track or capture the interfaces separating multi-component flows, two main approaches have been
developed. They are the Sharp Interface Methods (SIM) and the Diffuse Interface Methods (DIM). In
the SIM approach, the interfaces are considered a sharp (non-smeared) discontinuity in the physical or
thermodynamic properties of the fluids in contact. In the DIM approach, the interfaces are considered
a diffused zone over a narrow band. To deal with multi-component flows using the SIM approach,
various methods have been used with different types of EOSs. For example, in [1], the front tracking
method was implemented to simulate detonation problems with complex EOS governing real gases.
In [2], the level set method was used to simulate a broad set of test problems where the fluids are
governed by the stiffened EOS, and in [3], the interface solver based on the coupled level set and
volume-of-fluid method was used for simulating an underwater explosion where water is governed by
Tait’s EOS.

On the other hand, the simplicity of the DIM to deal with coalesce or breakup among different phases
or fluids has led many researchers to consider this approach. In a recent study [4], the phase-field
model and corresponding numerical method were developed to simulate a compressible multiphase
flow. Some studies refer to this method as DIM. In early developments, to simulate material interfaces
in compressible multi-fluids, various models have been used, for example, the mass fraction model,
and the Gamma model. However, they suffered from unphysical oscillations in mass fraction and
pressure at material interfaces. In [5], the mass fraction model was used in which a numerical flux
modification was introduced. It guarantees the positivity of the mass fraction but produces pressure
oscillations. In [6], the Gamma model based on a non-conservative scheme was used to avoid pressure
oscillations, which guarantees mass fraction positivity but cannot handle strong shock waves. Karni
improved her method to capture strong shock waves [7]. The method was established using a level set
technique to trace the interface location; the pressure at the interface is calculated using the primitive
variable formulation of the Euler equations. However, their major drawbacks are due to conservation
errors, which produce inaccurate internal energy and temperature at the interface. Moreover, they are
not easy to be applied with various equations of state. In [8], a quasi-conservative method based on
the mass fraction model was used to prevent spurious oscillations in pressure. Based on the basic idea
of Abgrall [8], a simple second-order conservative TVD scheme combined with a second-order non-
conservative scheme was presented in [9]. In which the stiffened gas EOS was considered in the
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simulations of compressible multi-fluid flows. This study has been extended in [10] to include the
general EOS to simulate real material interactions test problems, where the Euler equations were
replaced by a multiphase flow model and each phase was governed by its own EOS. Shyue [11] used
the compressible Euler equations and proposed an extension of the work presented in [9, 12] to include
the van der Waals EOS by casting the stiffened and van der Waals EOSs in a modified form known as
the general van der Waals EOS. The modified van der Waals EOS was used for modelling the mixing
zone between the two fluids. This work was extended in [13] to include the general Mie-Griineisen
EOS. However, these extensions are complex, as the number of equations in the model increases
depending on the number of parameters defining the EOS of the fluids being considered. Using the
reduced five-equation model of Allaire et al. [14] which is similar to that derived by Kapila et al. [15],
the results of [8, 9, 12] were extended in [16, 17] through the simulation of interfaces between
compressible fluids with various equations of state including the Mie-Griineisen EOS.

Although the five-equation model [14, 15, 18] satisfies the mechanical equilibrium by using single
pressure and velocity, which enable the model to be written in a conservative form. The model
possesses some significant computational difficulties, arise from the presence of the non-conservative
equation of the evolution of the volume fraction. These difficulties are related to shock computations,
maintaining positivity of the volume fraction and capturing accurately wave transmission across
diffuse interfaces. These difficulties are due to the non-conservative model, the difficulties in the
approximation of velocity divergence in the volume fraction evolution equation and the non-
monotonic behaviour of sound speed, respectively [19]. To overcome these difficulties the six-
equation model [15] was investigated in [19], by restoring the effects of pressure non-equilibrium in
the volume fraction equation using two pressures and related pressure relaxation terms. Petitpas et al.
[20] highlighted that when using complicated EOSs, they had to perform multiple adjustments to their
algorithm. An attempt was made in [21] to construct a common framework for the general EOS, but
their approach was different.

In this paper, the six-equation model [15] has been used here to consider various equations of state,
including the more complex EOSs, i.e. van der Waals, Cochran-Chan, Jones-Wilkins-Lee (JWL) and
shock wave EOSs, written in the general form of the Mie-Griineisen EOS, without the need to do the
modifications in the developed algorithm. The interfaces are captured rather than tracked using a
developed diffuse interface method on a structured grid. The method is based on Godunov’s approach
to solve the hyperbolic part of the model using an extended HLL approximate Riemann solver
described in [22] for single phase, which is modified and then extended to simulate compressible two-
phase flow in two dimensions as given in [23]. To achieve a second-order accuracy, the MUSCL
scheme is implemented with the Slope-Limiter.

2. The Compressible Two-Phase Flow Model

The compressible two-phase flow model, which is known as the six-equation model [19, 24], was
derived by Kapila et al. [15] from the seven-equation model of Baer and Nunziato [25] in the
asymptotic limit of zero velocity relaxation time. In this model, both fluids have the same velocity but
each fluid has its own pressure. The model consists of the evolution equation for the volume fraction
of one of the phases, the mass equations for each phase, a mixture momentum equation and the energy
equations for each phase. The non-conservative hyperbolic model in two dimensions without heat and
mass transfer and its closure relations are given in [23] and in one-dimensional form is written as
follows:

day day

e T UG THE ) (e
daip; | daipiu
=0 1b
ot * ox ’ (1b)
dazp, | Oazpu
ot + o 0, (10)
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where o, pn, pr and e, are the volume fraction, the density, the pressure and the specific internal
energy of phase n. The subscript n refers to the subscripts 1 and 2 that denote phases 1 and 2,
respectively, p; is the interfacial pressure, u is the x-component of the mixture velocity and p is the
mixture density.

In the presence of shocks, inaccuracies in the thermodynamic state are expected because of the
approximation of the two non-conservative internal energy equations. To correct these inaccuracies,
an additional conservative total mixture energy equation was proposed in [19]. This equation is
obtained by summing up the two internal energy equations with mass and momentum equations.

0 (pe + %puz) ou (pe + %pu2 + aypl + asz)
T ox =0 @

where pe the mixture internal energy is defined as pe = aipier + azpze.

2.1 Equations of state (EOSs)

An equation of state for each phase is needed to relate the pressure with the density and the internal
energy. The six-equation model is flexible and can deal with different equations of state for each phase.
In order to deal with problems with different types of EOSs, we write various EOSs in the general
form of the Mie-Griineisen EOS as follows:

p(p.e) = pli(p)le — ex(P)] + pr(p) 3)

where [i(p), ex(p) and pi(p) are the material dependent functions, i.e. reference Griineisen, internal
energy and pressure. They are given for various EOSs in Table 1. With these reference functions, it is
now feasible to simulate a diverse range of applications using different equations of state (EOSs)
without the requirement for algorithm modifications.

1) Ideal gas EOS:

In the caloric ideal gas EOS, the pressure has the form

p = (yr — Dpe, 4)

where vy is the adiabatic specific heat ratio depending on the gas under consideration, y = ¢,/c,. The
parameters ¢, and c, are the specific heats at constant pressure and volume, respectively. By writing
the ideal gas EOS (4) in the form of Mie-Grineisen EOS (3), the reference material dependent
functions are as given in Table 1. The adiabatic specific heat ratio for an ideal gas could also be
calculated by the relation:

where m is the degrees of freedom of a molecule, for monatomic gases m = 3 and for diatomic gases
m=>5.

2) Stiffened gas (SG) EOS:

The stiffened gas EOS can be used to obtain the behaviour of gases, liquids and compressible solids.
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The pressure has the form

p = — Dpe—ym, (5)

where the parameters y and & are constants that depend on the particular material under consideration.
These parameters can be determined for various materials using the experimental data [26], following
the procedure given in [27]. It can be notice that if the pressure constant © =0, SG EOS reduces to the
ideal gas EOS. By writing the SG EOS (5) in the form of the Mie-Griineisen EOS (3), the reference
material dependent functions are as given in Table 1.

3) van der Waal’s gas EOS:

The van der Waal’s gas EOS is used to govern real gases and can be written in the following form:

~1
p = (I_ bp) (pe + ap?) —ap?, (6)

where v, a and b are constants that depend on the particular gas under consideration. van der Waal’s
EOS (6) may be rewritten in the form of the Mie-Grineisen EOS (3), the reference material dependent
functions are as given in Table 1.

4) Cochran-Chan EOS:

This EOS is widely used to describe solids under a high-pressure shock wave. It is more accurate than
the SG EOS in such conditions [10]. The Cochran-Chan EOS may be written in the form of the Mie-
Griineisen EOS (3) as follows:

_ _ A e\ ] A (o)
P=rly 1){e+po(1—E1)[<p> 1] po(l—Ez)[(p) 1]+C”T"}+

) )"

where v, A1, Ei, A2, E», po, Cv and T, are parameters that depend on the real material under
consideration. The reference material dependent functions for the Cochran-Chan EOS are given in
Table 1.

5) Jones-Wilkins-Lee (JWL) EOS:

This EOS is used to govern detonation products. The JWL EOS may be written in the form of the Mie-
Griineisen EOS (1) as follows:

A _R,Po A —R,Po
P=p(y—1){e— L e( m) A e( Rz
poRl poRZ

4,60R%) 4 a,e(R5) (8)

where v, A1, R1, A2, R, and Ce are constants that depend on the real material under consideration. The
reference material dependent functions for the JWL EOS are given in Table 1.

6) Shock wave EOS:
This equation of state consists of the Mie-Griineisen EOS (3) and:

Us = ¢y +sU,
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where Us is the shock velocity, ¢, is the speed of sound in the material under consideration at
atmospheric conditions, U, is the particle velocity and s is a dimensionless parameter. Experimental

data for high pressure values are available for many materials in [28].

cz(1- %0)2

2[1—5(1—%0)]2

poC3(1-22)

p=pk - 1)(%)ae—eo—

Po + 2 )
— _bo
[1-s(1-2)]
The general form for the mixture EOS can be written as follows:
2 an (pnrk (pn)ek (pn) — Pk (pn))
Pe — Zn T ( )
k\Pn
p(pe' ay, aZ) = a (10)
% (n )
Iﬂk (pn)

where pe is the mixture internal energy and is defined as pe = Y2 a,,p, e, the other functions are
given in Table 1 for each EOS.

3. Numerical Method

The numerical solution of the considered six-equation compressible multi-phase flow model is
complicated owing to the presence of the non-conservative equation of volume fraction evolution, the
non-conservative terms, and the relaxation and source terms in the model. Thus, the numerical solution
of the model can be achieved by splitting the model into a hyperbolic part and a source and relaxation
part. These different parts are solved in succession using the Strang splitting approach, which can
symbolically be written as follows:

At At
i =Lg2 Ly tLSZ Uin (11

At
The symbol L2 represents the relaxation and source terms integration operators over half of the time

At 1
Uin+

interval. L,"" is the numerical solution operator of the hyperbolic part. U;" and are the
conservative vectors at the time levels n and n+1, respectively. The hyperbolic part is solved using an
extended finite volume Godunov approach using the HLL approximate Riemann solver with the
MUSCL scheme to achieve second-order accuracy as given in [22, 29]. The pressure relaxation is

applied as given in [30].

4. Numerical Results

To assess the numerical performance of our approach, various compressible two-phase flow problems
have been studied with either the same type of EOS or different types of EOS applied to each
phase. All these types of EOSs are used in these problems to show the generality and the oscillation-
free feature of the current method. In all test cases, a common assumption is made, that is a presence
of a negligible volume fraction 10~ of the other fluid in the fluid is considered a pure fluid. For all
test cases, a mesh of 400 cells has been utilized.
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4.1 One-dimensional test problems

1) Advection test problem

The first test is a popular interface advection test [20]. The computational domain consists of a 1 m
tube in length containing water on the left andair on the right. Initially, the interface is located at
a distance of 0.5 m. The initial data and the stiffened gas EOS parameters for both fluids are:
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1000,100, 105,4.4,6 x10% if x < 0.5
(pwpy) = 5 .
50,100, 10°,1.4,0 if x> 0.5

The results illustrated in Figure 1 are obtained at time t =2.79 ms after 2203 time steps using a Courant-
Friedrichs-Lewy (CFL) number equal to 0.9. The test shows the perfect behaviour of the method
regarding preserving constant velocity and pressure profiles. A good agreement is achieved between
the numerical solution (circles) and the exact solution (line).

2e+05 ————F——F———— 150 ———r——F———7—
| a) | | b)
1.5e+05 | — 125 =
£ E
.:U' o
S le+05 g’ 100
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0 1 | 1 | 1 | 1 | 1 30 L | 1 | 1 | 1 | 1
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Figure 1. Advection test: (a) Pressure. (b) Velocity. (¢) Mixture density. (d) Air volume
fraction. Numerical solution (circles) and exact solution (line) at t = 2.79 ms.

2) Air-gas shock tube test problem

The second test is conducted on the same domain as the first test. In the air-gas shock tube test
problem, the initial discontinuity that separates the two gases is located at x = 0.5 m. The air on
the left-hand side of the tube has a higher pressure. Both gases are initially at rest. Air is governed
by the van der Waals EOS (6), and its constant parameters are y = 1.4,a=5,b = 1073, whereas
the other gas is governed by the SG EOS (5), and its constant parameters are y = 1.2, 7w =0. The
initial conditions are as follows:

1,0, 10° if x <05

Iul =
(p,u.p) {0.125,0, 10* if x> 0.5

A shock wave propagates to the right from the higher density gas to the lower density gas, and a
rarefaction wave propagates to the left. The results shown in Figure 2 are obtained at t
= 0.0007 s after 351 time steps using a CFL number equal to 0.9. Also, a good agreement is
achieved between the numerical solution (circles) and the exact solution (line) taken from [31].
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Figure 2. Air-gas shock tube test: (a) Air volume fraction. (b) Velocity. (c) Mixture density. (d) Pressure.
Numerical solution (circles) and exact solution (line) at t = 0.0007 s.

3) Water-air shock tube test problem

The third test is a standard water-air shock tube of 1 m length filled with water under high pressure on
the left and air on the right at atmospheric pressure, and both fluids are at rest. The initial discontinuity
that separates liquid and gas is located at x = 0.7 m. The water is governed by the SG EOS (5), and its
constant parameters are Y = 4.4, 1 = 6 x 10*, whereas air is governed by the van der Waals EOS (6),
and its constant parameters are y = 1.4, a =5, b= 10", The initial conditions are as follows:

1000,0, 10° if x <07

(p,u,p) = {
50,0, 10° if x> 0.7

In this test, a strong shock wave with a pressure ratio of 10,000 propagates to the right from the high-
density fluid to the low-density fluid, and a rarefaction wave propagates to the left. Figure 3 shows the
results of air volume fraction (a), velocity (b), mixture density (c), and pressure (d). The results are
obtained at time t = 229 us after 275 time steps using a CFL number equal to 0.9 with 400 cells.

Also, a good agreement is achieved between the numerical solution (circles) and the exact solution
(line) taken from [9].
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Figure 3. Water-air shock tube test: (a) Air volume fraction. (b) Velocity. (c) Mixture density. (d)
Pressure. Numerical solution (circles) and exact solution (line) at t = 229 ps.

4) Solid impact test problem

The fourth test simulates the impact of a copper plate with a solid inert explosive. Both materials are
governed by the Cochran-Chan EOS (7) and are modelled in a computational domain of 1 m in length.
The copper is put on the left-hand side, and the explosive material is put on the right-hand side of the
computational domain. The material interface initially located at x = 0.5 m. While the copper plate has
an initial velocity of 1500 m/s to the right, the explosive material is at rest. Both materials are at

atmospheric pressure, with the initial densities and EOS parameters given in Table 2.

Table 2. Materials Properties for the Cochran-Chan EOS.

Parameter Copper Explosive
po, [kg/m?] 8900 1840
C,, [JVkg K] 393 1087
Ay, [Pa] 1.45667 x 10! 1.2871 x10'°
A», [Pa] 1.47751 x 10! 1.34253 =101
E, 2.994 4.1
E> 1.994 3.1
To 300 300
y 3 1.93

The solution to this test problem consists of two shock waves. The first is propagating to the right in
the inert explosive, and the second is propagating to the left in the copper. Figure 4 shows the results
of pressure (a), velocity (b), mixture density (c), and temperature (d). The results are obtained at time
t =85 us after 461 time steps using a CFL number equal to 0.5. In detonation problems, it is important
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to report the solution of the detonation temperature, which is calculated for each phase individually as
follows:

eTl
T, =— n=1,2. (12)
Cvn
The interfacial temperature can be calculated using the following relation:
T — 21212anpn CvnTn (13)
Zn anpn Cvn

Again, a good agreement is obtained between the numerical solution (circles) and the exact solution
(line) taken from [9].
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Figure 4. Solid impact test: (a) Pressure. (b) Velocity. (c) Mixture density. (d) Temperature.
Numerical solution (circles) and exact solution (line) at t = 85 ps.

5) Detonation products-copper interaction test problem

The final one-dimensional test problem is an interaction of detonation products with solid copper.
The detonation products are governed by a more complex EOS, i.e., the Jones-Wilkins-Lee EOS
(8), and the copper is governed by the Cochran-Chan EOS (7). Both materials are modelled in a
computational domain of 1 m in length. While the detonation products of TNT explosive are put
on the left-hand side, the copper is put on the right-hand side. The material interface is initially
located at x = 0.5 m. The initial conditions, taken from [9, 13], are as follows:

2485.37,0,37x 10"  if x < 0.5
8900,0, 10° if x> 0.5
The EOS parameters for copper are the same as for the previous test problem in Table 2, but those for

the detonation products governed by JWL EOS are p, = 1840 kg/m’, A; = 8.545 x 10'' Pa, R; = 4.6,
A>=2.05x10""Pa, R, =1.35, C, = 815 J/(kg K), y = 1.25, and Ce = 0.

MMM={

The solution to this test problem consists of a shock wave propagating to the right in the copper, and
a rarefaction wave propagating to the left in the inert explosive. Figure 5 shows the results of pressure
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(a), velocity (b), mixture density (c), and temperature (d). The results are obtained at time =73 us
after 348 time steps using a CFL number equal to 0.6.
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Figure 5. Detonation product-copper interaction test: (a) Pressure. (b) Velocity. (c) Mixture density.
(d) Temperature. Numerical solution using 400 cells (circles) and 10,000 cells (line) at t =73 ps.

4.2 Two-dimensional test problems

1) Gas bubble underwater explosion

The gas bubble underwater explosion test is an explosion of a gas bubble at high pressure under water.
A circular gas bubble of radius r, = 0.2 m is located at the centre of a square computational domain of
1 m x 1 m. While the top and bottom boundaries of the domain are set to be periodic boundary
conditions, the left and right boundaries of the domain are set to be extrapolation boundary conditions.
The water is governed by the SG EOS (5) and its constant parameters are y = 4.4, © = 6 x 10%, whereas
the gas is governed by the van der Waals EOS (6) and its constant parameters are y=14,a=1,
b =10"*. The initial conditions are as follows:

1250,0, 10° if r<0.2

(b2:p) {1000, 0, 10° if r> 0.2

When the explosion of the gas bubble starts, an outward strong shock wave is transmitted to the
surrounding water, an inward rarefaction wave propagates in the gas, and a contact discontinuity
continues to separate the gas and water. Figure 6 shows a surface plot for the mixture density and
pressure at time ¢ = 120 ps after 436 time steps using a CFL number equal to 0.3 with 300 x 300 cells.
Figure 7 shows the cross-section plot of the pressure and mixture density for the gas bubble under-
water explosion test at y = 0.5 m and t = 120 ps.
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Figure 6. Pressure and mixture density for gas bubble underwater explosion test at t = 120 pus.
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Figure 7. Cross-section plot of the pressure and mixture density for gas bubble under- water
explosion test at y = 0.5 m and t = 120 ps (Cercles) current results, (Line) exact solution.

2) R22 bubble-air shock interaction

The R22 bubble-air shock interaction was examined experimentally in [32], and numerically for
example, in [32, 33], in order to assess the performance of numerical methods. The initial configuration
of the computational domain is shown in Figure 8. While reflective boundary conditions are employed
on the upper and lower boundaries, extrapolation boundary conditions are employed on the left and
right boundaries. The incident shock wave is located on the right side of the R22 cylindrical bubble
and travels in air at M=1.22 to the left. The bubble is assumed to be in thermodynamic and mechanical
equilibrium with the surrounding air. We consider the bubble and the surrounding air (pre-shock air)
to be at atmospheric pressure and temperature (101325 Pa and 25). The air and R22 properties used
for this simulation are given in Table 3.

In what follows the subscripts 1, 2 and 3 denote pre-shocked zone, bubble and post-shocked zone,
respectively. The bubble density p> can be calculated as follows:

Ry

P2 = le_z (14)

The density, pressure and velocity of the post-shocked zone can be calculated according to [22] as:

_ (y1 + DM, — M3)?
s =P (y1 — DMy — M3)? + 2

(15)

2y (M; — Ms)z - -1
1 +1)

(16)

P3 = D1
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Figure 8. Initial configuration for air shock interactions with R22 and Helium bubbles.

Table 3. Gases properties used for the shock-bubble interactions.

Gas R C.
7 [J/kgK] [J/kg]
K Air 1.4 0.287 0.72
R22 1.249 0.091 0.365
He + 28 % air 1.648 1.578 2.44
The speed of sound in air is given by
c= YV1P1 (17)
P1

Knowing the Mach number, the shock wave speed S can be calculated from:

S = Mjc (18)
The velocity of air in the post-shocked zone is
P1 P1
u =(1——>S+u— 19
° P3 ! P3 (19)

The initial conditions and the constant parameters for the SG EOS governing air and R22 bubble are
given in Table 4.

The numerical results of the mixture density using an idealised Schlieren function for the R22 bubble
and the surrounding air are shown in Figure 9 using a mesh size of 1500 x 445 cells and a CFL number
equal to 0.3 at times 55, 115, 135, 187, 247, 318, 342, 417, and 1020 us. In this test, both gases are
governed by the SG EOS.

Table 4. Initial conditions and the SG EOS parameters for the R22 bubble test.

Physical property Air R22 Air
Density, kg/m? 1.1839 3.734 1.6295
velocity u, m/s 0 0 -115.478

velocity v, m/s 0 0 0
Pressure, Pa 101325 101325 159060
Y 1.4 1.648 1.4
T 0 0 0
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Similar results to Figure 9 were obtained when air is governed by the van der Waals EOS. This means
that the van der Waals EOS reduces to the ideal gas EOS.

: 1 @
O

©) d)

¢) | D

g) h)

7

\ |

Figure 9. The mixture density using idealised Schlieren function for R22 bubble-air shock
interaction at times: (a) 55 us, (b)115 ps, (c) 135 us, (d) 187 s, (¢) 247 us, (f) 318 us,
(g) 342 ps, (h) 417 us and (i) 1020 ps.

The x-t diagram shown in Figure 10 gives the position history of the upstream and downstream edges
of the R22 bubble as well as the refracted, incident, and transmitted shock waves. The schematic
diagram on the right part of Figure 10 shows the points used to construct the x-¢ diagram. All positions
are measured at the axis of symmetry except for the incident shock wave, which is measured either at
the top or bottom boundaries of the domain. Since our numerical method is diffusive, the points were
measured at the mean thickness of the interface. The computed mean velocities compared to the
experimental results of Haas and Sturtevant [32] and Quirk and Karni [33] are given in Table 5. These
results are in very good agreement with the experimental results of [32] and other numerical results of
[33]. A maximum estimated error of -1.9% is computed compared to the experimental results.

Table 5: A comparison of the computed velocities for the R22 bubble case with
experimental results of [32] and numerical results of [33]; for key, see Figure 10

Velocity Vs V& Vr Vu Va
Experiment [32] 415 240 540 73 78
Qurik and Karni [33] 420 254 560 70 82

% Error +1.2 +5.8 +3.7 -4.1 +5.1

Current 414.32 235.37 536.13 71.6 78.45

% Error -0.16 -1.9 -0.7 -1.9 +0.57
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Figure 10. x — ¢ diagram for R22 bubbles (left), key points (right): V; incident shock;
Vr refracted shock; Vt transmitted shock; V, upstream edge; V4 downstream edge.

3) Helium bubble-air shock interaction

The helium bubble-air shock interaction was examined experimentallyin [32, 35], and numerically
for example, in [31, 33, 36, 37, 38]. In thistest, a helium bubble was hit by a planar shock
moving in air with a 1.22 Mach number. The initial configuration of the computational domain
and the boundary conditions are as in the previous test; see Figure 8. The helium bubble is
contaminated with 28% air. Gases properties used for the simulations are given in Table 3. The
initial conditions were calculatedin the same manner as given in the previous test. The initial
conditions andthe constant parameters for the van der Waals and SG EOSs governing air and
the helium bubble, respectively, are given in Table 6.

Table 6: Helium test initial conditions and the van der Waals and SG EOSs parameters

Physical Air He+28% air Air
property pre-shock bubble post-shock
Density, [kg/m?] 1.1839 0.2153 1.6295
velocity u, [m/s] 0 0 -115.478
velocity v, [m/s] 0 0 0
Pressure, [Pa] 101325 101325 159060
Y 1.4 1.648 1.4
7 [Pa] 0 0 0
a, [Pa - m%kg] 5 0 5
b, [m¢/kg] 1073 0 1073

The numerical results of the mixture density using the idealized Schlieren function for the helium
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bubble and the surrounding air are shown in Figure 11 using a mesh size of 1500 x 445 cells and a
CFL number equal to 0.3 at times 28, 44, 58, 72, 82, 102, 245, 427, 674, and 983 us. In this test, the
helium bubble is governed by the SG EOS, and the air is considered as a real gas, i.e., governed by the
van der Waals EOS. These results are in very good agreement with the experimental results [30] and
the other numerical results [31, 29, 34, 35, 36]. The same results were obtained when both gases were
governed by the SG EOS. This confirms that the van der Waals EOS reduces to the ideal gas EOS in
this condition.

The position history of the interaction between the incident shock and the helium bubble is shown in
Figure 12. The figure indicates the x positions of the upstream and downstream edges of the helium
bubble as well as therefracted, incident, and transmitted shock waves. The schematic diagram on the
right part of Figure 12 shows the points used to construct the x-¢ diagram. All positions are measured
at the axis of symmetry except for the incident shock wave and the upstream edge, i.e., the incident
shock wave is measured either at the top or bottom boundaries of the domain, and the upstream edge
is measured at 0.0214 above the axis of symmetry. Since our numerical method is diffusive, the points
were measured at the mean thickness of the interface. The computed mean velocities compared to the
experimental results [31] and numerical results [32, 35] are given in Table 7. These results are in very
good agreement with the experimental results, with a maximum estimated error of -1.9%.

Table 7: A comparison of the computed velocities for the He+28% air bubble case with
experimental results [31], and numerical results [32, 35]; for key, see Figure 12

Velocity Vs Vr Vr Vu Va Vi
Experiment [31] 410 900 393 170 145 230
Qurik and Karni [32] 422 943 377 178 146 227
% Error +29 |+48 |+4.1 |+4.7 | +0.7 |-13
Marquina and Mulet [35] | 414 943 373 176 153 229
% Error +1 +4.8 |-54 +34 |+52 |-04
Current 407.4 | 904.64 | 377.68 | 166.23 | 144 223.58
% Error +0.63 | +0.52 | -3.9 -2.2 -0.69 | -2.8
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Figure 11: The mixture density using idealised Schlieren function for Helium + %28 air bubble-air
shock interaction at times: (a) 28 ps, (b) 44 ps, (c) 58 ps, (d) 72 ps, (e) 82 ps, (f) 102 ps, (g) 245 ps,

(h) 427 ps (i) 674ps and (j) 983 ps.
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Figure 12: x—¢ diagram for He + 28% air bubbles (left), key points (right): V, incident
shock; Vg refracted shock; Vr transmitted shock; V, upstream edge; V4 downstream

edge and V; air jet head.
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5. Conclusions

This study has considered numerical simulations of multiphase flow using the six-equation model with
various equations of state. All types of equations of state studied in this work were written in the
general form of the Mie-Gruneisen EOS. A diffuse interface method on a structured mesh was used

to solve the multiphase flow model. The developed numerical method has been based on a multiphase
Godunov approach with HLL Riemann solver. The accuracy of the method is examined through

carefully selected test problems in one and two-dimensional space. The method handles the simulation
of the investigated two-phase flows very well with either the same type of EOS or different types of
EOS. One-dimensional test problems were compared with the exact solution and the two-dimensional

bubble shock interaction test.
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